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1
Chapter

Introduction

Transportation is among the strongest growing activitiesir society. Reasons for the in-
crease of transportation are legion. Transportation aestsease while quality increases
(e.g., airplanes), leading to ever-growing demand forgpantation. Not only the growing
number of people, but also behavioral changes lead to isicrga@emand for transporta-
tion. For example, existence of the Internet sets up easidwade communication for
organizations leading to globalization. Also, the growtindustry and the large amount
of supply on the market demands for bigger sized enterptisghave to organize their
transportation efficiently. At the same time, the growthrahsportation renders our trans-
portation infrastructure, like roads, railways, harbard airports, a scarce resource. Typ-
ically, however, plans to increase the transportatiorastfucture either take a long time
to realize or are simply not realizable at all. As a resulré¢his an incredible amount of
effort in optimizing the process of both public and freigfatrtsportation using the current
transportation infrastructure as efficiently as possible.

One way to optimize the current use of transportation imfuasure is complete au-
tomation of transportation. This development started ktmglfor example, carrying
heavy materials at Corus by robd)_ts(lMlh_QLs_and_Rjjnédgﬁﬁz L but is on the rise. In
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(a) Aerial view. (b) Quay cranes unloading a ship.

Figure 1.1: European Container Terminals (ECT).

1988, European Container Terminals (ECT) realized the éwvst robotized container
terminal that caught world-wide attenti n_(KQnmgs_éthDQé). Automated Guided Ve-
hicles (AGVSs) transport freight containers between quaynes and stocking yard back
and forth. These AGVs are completely controlled and steleyezbmputer programs and
drive around 24 hours a day, using the existing infrastmeofuite efficiently. Nowadays,
there are approximately 200 AGVs operational at ECT. Chghs at ECT are to know
at all times where containers are exactly located (oftehrtiegies with radio frequency
identification numbers (RFID) are used to accomplish tlhis)y to stack these containers
in the stock yard (if you would need a container soon, you @owlt want to stack a few
others on top of it) and in general how to process the freilgiaiding or unloading ships,
trains, and trucks) as fast as possible (see Figuie 1.1).

At the moment of writing, plans are developed to create arergrdund logistic sys-
tem (OLS) at Schiphol international airport. This pipeeliconnects the flower market of
Aalsmeer, Schiphol airport, and a new rail-terminal in Higldrp to each other. Feasibil-
ity studies on this project are not very positive on shomgrthough estimate that such
systems become more and more important in the fwmdﬁﬁle_ddlﬂmy

Also in public transportation we see the birth of automatidhe idea of automated
driving dates back about 70 years, when General Motors prede vision ofdriver-
lessvehicles moved under automated control at the 1939 Worldissin New York
(tRQ_dnegLK._LaL/LIQ_QG). According @@bon, researxchegan to consider poten-
tial uses of computers in traffic management. The fully a@t@a highway was initially
examined by General Motors during the late 1970s. Due to dvarees in comput-
ing technologies, microelectronics, and sensors in th@4,938e University of California
Partners for Advanced Transit and Highways (PATH) prograsdarried out significant
research and development efforts in highway automatiaredime 1980s. Furthermore, in
1994 the U.S. Department of Transportation launched theohatAutomated Highway
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System Consortium (NAHSC) to fund long-term research orofugted Highway Sys-
tems. These techniques could ensure a more efficient usegb\fays by allowing cars
to operate in so-called platoons, driving at a very clostadise from each other, thereby
increasing the capacity of highways.

Europe does not stay behind in automated transportatiorexample, in Paris, under-
ground railway is partly automated. Control of subways latreely easy due to driving
on rails and no interference with other (human) traffic.

The automobile industry in the late nineties introduéeldptive Cruise ControlThis
system attempts to increase the comfort of a driver by auiocally adjusting speed to the
direct successor based on distance sensors. Due to theuati@n of vehicle-to-vehicle
communication, the system could be improved to react fastdrmore smoothly. There
is still a lot of ongoing research in the area ©d-operative Adaptive Cruise Control
for instance on the effect of this system on the traffic thigug (van Arem et al., 2006;
Laumonier et al., 2006).

Although these automation processes are promising, ssiofékis new technology
is heavily depending on public acceptance. Furthermoexethre difficulties here of
ethical grounds, e.g., who is to blame if a collision occuts?the other hand, there are
technological advances that can more easily be acceptedebgublic, like (dynamic)
route navigation systems that, for now, could advise only perhaps later take over
human control.

Automation in transportation does not need to be restrittidtie automation of the
real-time control of (groups of) vehicles. Often, carefldrming of transportation pro-
cesses is as important in increasing the capacity of thagtrfricture. The classical ap-
proach in automating transportation processes, howewasrfdcused on planning and
real-time control as two separate areas. In this thesis,difrall, we will propose an
integrated approach to automation of transportation @eE® by discussing a so-called
context-awareplanning approach, where planning takes into account nigttbe route
of a single vehicle, but the already planned routes of otkaickes as well. In this way,
ideally, if the plan is executed there is no further need &al-time control or conflict-
resolution, since everything has been taken care for ingdh&egt-aware planning phase.

Typically, a contex-aware planning approach takes exjgilans into account by con-
structing a route plan for an individual vehicle. Such a equian consists of a sequence of
(time limited) reservations of parts of the infrastructisech that conflict-free execution
of the plan can be ensured if every one is able to execute disqarrectly.

In this thesis we first of all contribute to the context-awptanning approach by
improving the efficiency of existing systems in a significaraty and by empirically in-
vestigating alternative ways for determining infrastuetreservations, for example, by
not using a fixed first-come-first-serve allocation scheméeatso allowing for more so-
phisticated allocation schemes where the priority of elics taken into account.



4 Operational Transport Planning in a Multi-Agent Setting

Our second main contribution is in the investigation of thie of incidents on the effi-
ciency of automated transportation planning. Often inisgalscenarios there are certain
events that cannot be anticipated in advance and have avesigéduence on the planned
activities leading to the necessity of replanning. We ¢adbe eventscidentsand taking
incidents into accounnhcident managemenRobust planning and replanning techniques
are required in situations where incidents occur reguldidygive some examples, for an
AGV terminal, incidents include malfunctioning commurtioa with a vehicle, engine
problems, collisions. Also, changes in transportatioruestis — even adding new trans-
portation requests — can be viewed as incidents. Plannirnigaude that suffer from per-
formance degradation when the number of disruptions ise®eender useless in many
realistic transport planning applications.

In this thesis we therefore focus on the performance of rplatening methods when
there are incidents and compare context-aware approadtteslassical route-planning
approaches.

The basic scientific problem area we are contributing to istthesis is known as the
pickup and delivery problemTo give the reader a better idea of this problem area, its
development and our contribution, in the sequel of this tdrape will first describe the
basic ingredients of thel pickup and delivery transporhplag problem Then we present
the main challenges in this domain and give an example. fulesdly, our approach,
research questions and contributions are presented.

1.1 Pickup and delivery transport planning

In pickup and delivery transportation planning, multiptéaas (agents) each have to con-
struct a transportation plan for their vehicle and to ensluaé their set otransportation
requestss correctly executed. A transportation request is a cust@mequest to deliver
freight (or passengers) from a pick-up location (the curtecation of the freight to be
picked up) to the delivery location (the destination of treaght).

Additionally, the customer provides several constraimsiow he or she desires the
transportation request to be executed. The pickup andeaiglmust preferably be ex-
ecuted within correspondingme-windows a time-window is an interval of time. Fur-
thermore, the customer specifiesesvard function for the executor of the transportation
request based on these time-windows and the actual timeiel wie executor will per-
form the pick-up and delivery events. This reward functiagh @bviously be maximized
if the time-windows for loading and unloading are not vielht

The executor of the request owngransport resource A transport resource is a
mobile entity like an automated guided vehicle (AGV), a kuan airplane, a boat, or a
taxi cab. This transport resource can move around througtrdhsport network The
transport network defines both locations — at least all optble-up and delivery locations
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encountered in transportation requests — that can cormsgort resources as well as
connections between locations. The transport network eswlirces together are referred
to as thanfrastructure

The allocation of transportation requests to executoralisdtask assignmenirask
assignment can be aided ayctioneerghat use auction protocols to determine which ex-
ecutor should be assigned which transportation reque3sk allocation, and also how
the individual executors determine the order in which theyplete their tasks, is con-
sidered to take place at the strategical level and, thexgfmmsidered outside the scope
of this thesis. We simply assume each transport resourca kiesting sequence of lo-
cations and by traversing this visiting sequence it willreotly execute its transportation
requests.

Usually, there is a common transportation network wherevétecles are executing
their plans. Due to limited capacities of this network, theglividual transportation plans
might easily interfere with each other. Therefore, we neefind efficient plans for the
individual vehicles, but also need to avoid conflicts withaetvehicles during execution
of these plans.

Once one or more transportation requests are assigned taeauter, this executor
must create an initighlan to execute its assigned transportation requests. Suchna pla
consists of aoute, a scheduleloading andunloadinginformation. The route is a se-
guence of locations that are connected in the given trahsgdwork. Of course, this
route must visit all pick-up and delivery locations of theigeed transportation requests.
A schedule is a sequence of time points that specifies at viinighthe transport resource
plans to travel to the next location. Finally, the loadingl amloading information speci-
fies when freight (or passengers) is loaded and unloadedtfrermansport resource.

There are several aspects that influenceetfieiencyof plans. First, the executors
are responsible for executing the transportation requleatsare assigned to them. More
specific, the reward function is a measure for the efficierfahis request’s execution.
Second, what are the costs of the executor? We can distitwebée fixed and variable
costs. Fixed costs are costs for owning or renting the t@msgsource. Variable costs are
costs for having a driver for the transport resource. Pbssine might want to distinct
between different states Iike@un)loading, driving, wagtfor other agents, or being idle.If
searching for not only feasiloiglans, but also efficient plans, one must define a certain
cost model that incorporates these notions.

The final aspect of pickup and delivery planning we need tsictan is the occurrence
of incidents Incidents are events that can disrupt the regular operafia system, in this
case composed of a transportation infrastructure (thear&ywehicles, and transporta-
tion tasks. Such incidents may occur due to sudden changeansportation tasks or

1By feasible plans we mean a plan that is possible to exedisits gll pick-up and delivery locations of
assigned transportation requests and loads and unloddsigiiit or passengers correctly.
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due to malfunctioning of one or more individual resourcesofs at the infrastructure
resource or transportation resource level).

Although a lot of research has been done in the area of pickdplelivery transporta-
tion planning, there are still several challenges remainirhose are the topic of the next
section.

1.1.1 Challenges

Important issues in the transportation domain are the goadle design (transport net-
work), vehicle scheduling, idle-vehicle positioning, i@ maintenance (e.g., battery
management for AGVs), vehicle routing and conflict resolutiLe-Anh and de Koster,
2004). Our focus is on the short-time online operationahpiag level. That is, we
abstract from low-level control specific aspects like bngkiaccelerating, and steering
together with vehicle properties required to work with #nesntrol actions. Strategic is-
sues, such as models to estimate the best number of vehittesimize the guide-path,
are also not included.

We consider the most important challenges in pickup andelglitransporation plan-
ning to be:

e Scalability due to more widely usage and success,

e Robustnesscomplete automation, no human control,

e More insight in the specifitactorsthat make a problem difficult,

¢ Insight in whatinformationis necessary for a planner to perform well.

These challenges form the source of our research and résnltbe contributions de-
scribed in Sectiof 115. The next section describes a canevample of pickup and
delivery transportation.

1.2 Approach

The classical solution to the operational pickup and dgfiveansportation problem is,
in order to reduce its complexity, to separate route plagpfiom run-time conflict res-
olution. First, each actor plans an optimal route to exetasté&ansportation plan and
during execution conflict resolution is used to ensure too@ractual capacity conflicts.
This approach has several disadvantages: sometimes ttesillt in gridlockgand the

completion time of the transportation requests are in geémat predictable in advance.

2A gridlock is a traffic jam so bad that no movement is possible.
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The example of the previous section, however, clearly sdatat vehicles (or air-
planes) have to consider the plans of other vehicles in theank to reach a good per-
formance. More advanced approaches try to separate betagterplanning and conflict
resolution during planning time. With this approach routenping is still done without
considering potential conflicts, but the completion timérahsportation requests is better
predictable at the time the transportation plans are egdcut is, however, questionable
how far this separation (of route planning and conflict re8oh) harms the quality of the
final transportation plans. It is of course possible thatsaonflicts can be avoided by
the vehicles by making detours.

Other researchers adopt an integrated approach, wheretoggblution is integrated
with route planning (context-aware routing). With this amgch it is guaranteed that
vehicles find the optimum plan, i.e., the fastest possiblg wwaeach their destination,
given that prior reservations of other vehicles do not cleasmgymore. The best known
result is that of Kim and Tanchaco (1991), which has a highmatational complexity.

We will design a new framework for multi-agent transpodatplanning where we
distinguish transportation agents and infrastructurenegeTransportation agents make
transportation plans, while infrastructure agents magersation plans for infrastructural
resources (lanes, crossings). In making their transpont@ians, transportation agents
query infrastructure agents about the availability of paftthe infrastructure they need.
This extends the approachlof Kim and Tanchoco (1991) by allgpwmfrastructure agents
to use other reservation policies than a simple first-conseé-$erve and, e.g., to take
into account priorities of agents. With this flexible franw infrastructure agents can
optimize the throughput of the transport network, while trensport agents strive to
maximize their own performance.

To see the effect on the performance of the context-awargngbapproach versus
approaches that separate routing from conflict resolugweral experiments will be pre-
sented in this thesis. In synthetic problem instances wtnerémportant factors, such as
the transport network, set of vehicles and the set of tramsipon requests, have carefully
been varied the difference in performance will be measunegirgcally.

Critics of the context-aware routing approach claim that omght doubt whether
it is useful to invest this much time in finding plans which daa destroyed by a few
incidents (and cause a re-planning). Would the classigaiogeh perform equally well
in incident-rich circumstances? One important aspect tsicker is that with the context-
aware approach the infrastructure agents know the regangaif all vehicles. Therefore,
if an incident occurs, they know exactly which vehicles ntigé affected by the incident
and the infrastructure agents inform the transport agéyastadelays and unavailability
of parts of the infrastructure, enabling them to replanrthaites.

Hence, another important factor in the experiments is thellef incidents. The
effect of incidents on the performance of the system will impigically evaluated for the
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Figure 1.2: An imaginary airport network example.

different transport planning approaches.

1.3 Example

This section describes some of the challenges (automagstbnss are faced in pickup
and delivery transportation. Figure 11.2 shows a simple gamf an imaginary airport,
where airplanes have to taxi from runways to gates and bao&.eXample includes four
airplanesA1, Ay, Az and A4, two terminalsT; and T, four gatesG;, Gy, Gz and Gy,
three runway®;, R, andRs3, and the remaining resources have been named.,r3;.
We assume that all locations have a capacity of 1; hence, naatwplanes can have
overlapping reservations for any of the infrastructur@ueses at any time. The time to
traverse a resource is also assumed to be the same, say [Lrésparces.

The airplanes are numbered in the order they had contacttiathair traffic con-
trollers. Therefore, air traffic control first received arftecked the plan of airplant,
then communicated with airpla®® followed by Az and, finally, airplané\s announced
its plan. Each time an airplane informs air traffic controbabits plan, the latter checks
whether the plan is valid with respect to prior reservatioithe other airplanes and then
makes reservations for the new plan.

The first thing we can learn from this example is that, if twipkines travel a com-
pletely opposite route — say airplade travels to runwayR; and airplaned4 does the
opposite — a deadlock is unavoidable if the airplanes stretsing simultanesouly and
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Figure 1.3: An example plan for the four airplanes. Verticdhe airplanes are listed and
the horizontal axis represents time. The total costs ofaiais are 10- 12+ 13+ 24 = 59.

do not alter their route. However, we can improve on thisagitun by having each airplane
create reservations that cannot be violated by the othalaaes.

The first airplane to construct a planAs. AirplaneA; wants to take off on runway
R;. Because there are no reservations of other airplanes atdheent, airplané\; can
execute the routéGgy,rs,rg,ro0,r11,r12,r14,r15,r 16, R1) immediately and as fast as pos-
sible. AirplaneA; is not delayed by airpland; and can go right behind it. The same
holds for airplaneAs, who wants to take off at runwakl,, while bothA; and A, have
non-conflicting reservations. For airplaAg, who wants to take off at runwey as well,
there are two possible plans that have the same costs. iFicat) travel along the re-
sources 1, 11, r12, andri4. In this case, it has to wait one time unit before it can enter
resource 1, because airplan®; is in r1» at that moment. Second, airplaAg can also
travel along the resourcesgy, r11, r13, r1g. The resulting plan is one resource longer, but
there is no waiting time; hence, the time it enters the runisdiie same. Let us sads
chooses the plan without waiting time. Then, Fidguré 1.3tHates these plans.

Just before touch down on runwg&y, airplaneA4 contacts air traffic control. It turns
out airplaneA, must taxi to gates;. There are two possible choices: the upper route
(Rs,r17,r1s,...) or the lower routeRs,ri7,r21,...). In both cases airplan&s wil en-
counter an airplane coming from the opposite directionréadburces have unit capacity),
which means it cannot enter resourge until the other airplanes have finished using it.
This results in a big waiting time for airplare,.

All airplanes constructed a valid plan, which reaches thestination resources as
fast as possible, given the prior reservations. But is thas the best possible plan for
the airplanes? No, consider the plan illustrated in Figude In this particular situation
where airplanes travel opposite routes, it is usually bdtfeom one side they take the
one (e.g., upper) route, while from the other side the angdaake the other route.

We can separate between two different approaches to imgpnevgan illustrated by
Figure[1.8. The first is toescheduleone or more airplanes. This means the routes of
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Figure 1.4: The total costs of this plan are402+ 13+ 14 = 49.

the airplanes remain unchanged, but the times at which th&y end exit resources is
changed. In this example, rescheduling cannot result ipldeillustrated by Figure 1.4.

The other approach is t@routeone or more airplanes. Rerouting both changes the
times at which the airplanes enter and exit resources, dagvle sequences of resources
that form the routes of the airplanes. Obviously, with réirggithe optimal plan can be
reached. The challenge here is the enormous amount of piesibf the number of
airplanes grows.

One possible approach to deal with this is to bearistics for instance to determine
the order in which the airplanes search a shortest pathidexample, a good choice for
such a heuristic might be to give priority to airplanes (fogating reservations), which
have (approximate) opposite source/destination locatioairplanes that already created
their reservations. The use of such a heuristic reducesbarat of possibilities that have
to be considered, but sometimes, of course, prevent thewdisgof the optimal plan.

The next section describes our approach to solve large piekd delivery transporta-
tion planning problems. Using such an approach computerscopport the air traffic
controllers to make the right decisions.

1.4 Research questions

The research presented in this thesis addresses routimgglidng, and conflict-resolution
in the transportation planning domain; our first goal is & tand compare planning meth-
ods that separate route planning and conflict resolutiomwiegrated planning methods.
Furthermore, experiments will show the performance of ifferént infrastructure agent
policies in the flexible framework.

The second goal is to find out whether the context-aware appris alsaobust; we
test and compare the different approaches under incredsingjty of disruptions like
malfunctioning resources.

During the project an agent-based transport planning sitiom tool calledrRAPLAS
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is developed to be able to do experiments and a benchmark satstructed for pick-up
and delivery transport planning problems.

1.5 Research contributions

With hindsight we list the main contributions of this thegisouped into categories:

Framework

e Distinguish between transport agents (making transpornt@ians) and infrastruc-
ture agents (making reservation plans for individual istinacture resources).

e Resource management model for transportation planning.

e More general definition of a conflict not assuming unit cafya@sources.

Methods

e Shortest-path algorithm taking into account both forbidtiene-windows and an
intermediate visiting sequence (ordered sequence ofitorsato be visited).

e lterative traffic-aware dynamic (re)routing and schedyinethods that guarantee
conflict-free plans.

¢ Incident management techniques in routing and scheduling.

Experiments

e Benchmark set for the transport planning problem togethtr s&vsimulation en-
vironment that can plan, replan, and execute to gain exgetiah data. The sets
of transportation requests were generated in such a wayheaiptimal solution
is known (and an lowerbound for merged instances, which hrareasing request
load).

e Insight in what sort of information is important for the (p&gnner while
(re)planning pick-up delivery transportation under infloe of incidents.

e What are the important factors in transportation that mageoalem difficult to a
(re)planner or that make a big difference in the results?
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This research started as a follow up of a master’s thesisargse(Zutt,  2001)
that has been demonstrated at the Belgium-Netherland§ickattiintelligence Con-
ference |(Zutt and de Weerdt, 2000). The system architecua® first published in
(Aronson et all., 2002a,b). These papers deal with the sepataetween the strategic,
tactical and operational layer of a transport planningesysand the individual activities
that belong to these layers. As a joint work with Roman vankitegt and Leon Aron-
son, both a paper on the tactical level and a separate pafbe @perational level were
published|(Zutt et al., 2002; van der Krogt et al., 2002).

Some work on diagnosis has been carried but (Bos et al., 2088)vever, this is
mainly omitted from this thesis due to the choice of adopérmpttom-up approach. If an
incident occurs, the system is signaled from where the pligm occurred and, hence, it
is assumed that all information concerning the incidenhisvin exactly.

In (Valk et al., 2001a,0,c) methods for coordination in tbgistic domain were pre-
sented accompanied by some approximation results. Thspwanplanning model, as
used throughout this thesis, is first described. in (Zutt amitievween/ 2004). Apart from
the model this paper includes the first planning methods,ngnothers, the approach
suggested by Hatzack and Nebel to transform route planwing fleet of vehicles to a
variant of Job Shop Scheduling. In (de Weerdt et al., 20G8b)irst collaboration results
are presented. The latest publication (Zutt et al., 2008)aempilation of this thesis as a
book chapter.

Of course, the transport planning simulation tooRAPLAS, with all its ex-
tensions, is freely available under the GNU General Publicehse (GPL)
at http://traplas. sourceforge. netl Also, a three-dimensional
visualization toolkit, especially developed for RAPLAS, is available at
http://traplasviz.sourceforge. net. TRAPLASVIZ is based on Open-
SceneGraph, an open source high performance three-domahgraphics toolkit.

1.6 Outline of thesis

Chapter 2 describes a family of pickup and delivery problemd the state-of-the-art
solution techniques, accompanied by benchmark resulsglve those problems.

Subsequently, Chaptel 3 describes our transportatiomiplgriramework. Its most
important aspect is the separation between transport @@gewt infrastructure agents,
which makes it more flexible: transport agents optimize thexation of their own trans-
portation requests, while infrastructure agents optirthieeroughput of the transport net-
work. This chapter also provides definitions for what we od&isa conflict exactly and
describes how to compute an individual reservation to acaasnfrastructure resource
for a vehicle in such a way that it does not conflict with anysérig reservation.
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Chaptei 4 presents our newly developed planning and sahgdukthods. A traffic-
aware shortest-path planning method is described; thikagégular shortest-path algo-
rithms, e.g., the famous Dijkstra algorithm, extended \lig awareness of the plans of
other vehicles. Then, the planning methods are descritzdrémsport agents use to cre-
ate plans to execute the tasks that were assigned to themndtoms to the methods are
presented that can deal with situations in which incidentsio

In Chaptei b describes our experiments. For this purposanagortation planning
simulator, calledrRAPLAS, is developed, which is built on top of the Pamela Run-Time
Library ofilvan Gemund (1994). The construction of a benclinsat of pick-up and de-
livery transportation planning problem instances — sgtigfour transportation model —is
given. The simulator together with the benchmark set haee bbeade publicly available
as a SourceForge project (nanTeRIAPLAS). The experiments were efficiently executed
on the supercomputer (the Distributed ASCI SupercompDi&g-2).

The performance of different planning methods is testedcantpared while varying
the transport network structure, the number of transportatquests and the number
of transport agents. The same experiments are repeated inwbreasing the level of
incidents to test the robustness of the planning methodshdds that performance best
under normal circumstances, might be inferior in case augisons that disturb normal
plan execution. Throughout these chapters figures arergess® illustrate the scalability
of the approaches — in other words, can the planning methidsesused if the system
grows (e.g., bigger transport networks, higher requesidpaore agents, more incidents).

Appendix(A is included as a guide for the reader about thetiootaised throughout
this thesis. In AppendixD it is proven that the transporhpiag problem is at least as
hard to solve as several other famous problems like Satilgfyathe Traveling Salesman
Problem (TSP) and others. This supports the developmentaohmg methods that,
instead of searching for the best possible (or optimal)temiyare satisfied with searching
for approximations of these optimal solutions.
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This chapter describes well-known problems with statéhefart solution techniques in
the field of pickup and delivery transportation. Althougkearch has progressed very
well in the field of pickup and delivery transportation, itncent easily be determined
which of the many different approaches supersedes thesoth@erformance. Attempts
have been made by organising competitions at conferencdsygoroviding benchmarks,
but hard conclusions cannot be drawn at this point.

Besides the many similarities between the theoreticalyp&nd delivery transporta-
tion problems and their realistic counterparts, there &se @vo important differences
that this chapter points out. First, in August 2006, new®rea that the port in Rotter-
dam could not keep the pace with its competitors (Bennelk$l6 2ANP, 2006). Besides
lack of space the reason for this was a failing ICT. No mattav lvell the organisation
is structured and how good the planners perform, overafbpaance depends on the
weakest link. Therefore, one must also act with competemoase some (sub)systems
are malfunctioning and pre-computed plans must be modified.

Second, the exact structure of the transport network is@testracted from. Instead
of constructing a detailed route for each vehicle, it is asst that each location is con-

15
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nected to each other location. Implementing this in pracatesults in a system that has
no control over congestion. To minimize congestion, and &ximize throughput of the

transport network, space and the individual routes of tHecles must be modeled in

more detail. Basic shortest-path algorithm to determinbatsst route from a source
to a destination location, without taking into account othehicles, do not suffice. The
same is required to avoid collissions and guarantee safgtgti@ints, such as a safety
distance between vehicles.

2.1 Classical pickup and delivery problems

The general point of interest of this thesis is pickup andsdg} transportation problems.
In traditional pickup and delivery problems, vehicles hawdransport freight from a
source to a destination location without transshipmentynad the intermediate locations.
Furthermore, it is assumed that all transportation task&m@aown in advance.

The first problem to be discussed is the General Pickup andveddgl Prob-
lem (Savelsbergh and Sol, 1995). In the GPDP, a fleet of v&hid given and each
vehicles has a specified loading capacity, start locati@heard location. Furthermore,
there is a set of transportation requests and each requesstof a source and destina-
tion location. A solution to the GPDP is a set of routes for\bhicles that satisfies the
set of transortation requests without any transshipment.

Three specializations of the GPDP that have been extepstuadied are th@ickup
and Delivery Problen{PDP), theDial-a-Ride Problem(DARP) and thé/ehicle Routing
Problem(VRP). In the PDP each transportation request specifieggéessource location
and a single destination location. Also, all vehicles defram a single location and they
have to return there - this location is referred to asdépot The DARP is a PDP where
the load of all transportation requests equals 1, namelplpanstead of freight is being
transported (for example, the taxi-cab domain). Besidas i the DARP it is obligatory
that all transportation requests are executed, whereatdasther problems mentioned
here this not always a hard constraint (Savelsbergh andl8984%). The objective in the
DARP is often modeled from the point of view of the customeg (eminimizing waiting
time or travel time of the customer), as opposed to the pdiateav of the system (e.g.,
minimize the makespan or total fuel consumption) for theeoffroblems. The VRP is a
PDP with either all source locations or all destination tarss equal to the depot.

Researchers likel _Cordeau and Laporte (2003); Cordeau ef2404, | 2005);
Sammarra et al.| (2006); Berbeglia et al. (2006); Savelsbangl Sol [(1995) all pro-
vided definitions for the aforementioned problems, usulatynulated as mixed-integer
programming problems. Mixed-integer programming prolseare linear programming
problems where some of the variables must be integer. Adthduear programming
problems can be solved efficiently, mixed-integer programgnproblems cannot (unless
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Figure 2.1: General Pickup and Delivery Problem (GPDP).

P = NP). All variants of the GPDP discussed in this section are kmtmwbeNP-hard.

In the GPDP tasks must be assigned to vehicles and routesomasimputed for the
vehicles that execute the tasks assigned to it. In thissettie GPDP and variants are de-
scribed in detail. Furthermore, mixed integer programstiped by Savelsbergh and 'Sol
(1995) are also given, because in this form the GPDP andniarae usually encountered
in literature and they give a detailed definition.

Remark 2.1 To understand the mixed integer programs, for the GPDP givefig-
ure[2.2, some notation needs to be introduced N_be the set of transportation requests
to be executed. For each transportation reque$, a vector of load quantitieg indi-
cates what has to be transported from locations in the setigine N < N to the set
of destinations\,” — N. For originse N this quantityq; s is a positive load to be trans-
ported to destination locations that occur at other elemefy;. It must always hold
thatZieNi+ gi,j = _ZjeN; —0;,j (for each transportation requést N the sum of loading
quantities equals the sum of unloading quantities). Thé\det UienN™ is defined as
the set of all origins, and, likewise, the $¢t = UjenN,~ for the set of all destinations.
Their union forms the s&t = N~ UN™.

The setM is the set of all vehicles, where each vehicleM has a capacit®) € N, a
start locatiork™, and an end locatiok. Mt = {k* : ke M} is the set of start locations
of the vehicles antl~ = {k~ : ke M} the set of end locations. These together form the
setW = M* UM~. The transport network has vertex et/ W and for alli, j e V uW
the distance from to j is denoted bydij, tj; is the travel time, and;j the travel costs.
Dwell times, such as the length of time cargo remains at dilmtéefore being loaded
onto a ship or the amount of time a train spends in the statitnits doors open, can be
incorporated in these travel times.

The GPDP, as illustrated in Figure P.1, is the problem of hmwdivide the transportation
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requests iftN over the available vehicles M and to construct a routf = (vi,Vva,...,Vn)

for each vehicldk e M, wherev; eV UW. For each vehicl& e M, this route must start in
k™ (v1 = k), end ink~ (v, = k™), and it must visit all source and destination locations
N* UN~ of transportation request N assigned to this vehicle exactly once, and no other
locations. Furthermore, the source locations of the trariapon requests must obviously
be visited before the destination, but also at no point albegoute the capacit§y of

the vehicle can be exceeded. Finding an arbitrary plan,a.set of routes, that satisfies
all of this is trivial, just start with an arbitrary partitioof the transportation requests
as an assignment to the vehicles and put these in an arbsteguence (source directly
preceding destination). The difficult part is the optimiaat to find a route for each of
the vehicles such that, for instance, total cost is minichizetotal profit is maximized.

Figure[2.2 illustrates the General Pickup and Delivery Rrokformulated as a math-
ematical programming problem. Here, four additional \alea play a role: assignment
variablez}( € {0,1} equals 1 if transportation request N is assigned to vehiclke M,
movement variablex}‘j € {0,1} equals 1 if vehicl&k € M travels from location € V U k*
to locationj e V u k™. The departure time at vertéx V uW is specified byD; and the
the current load of the vehicle arriving at veries represented by:.

Constrainf 2.1, 2]2, arid 2]12 correspond to the task assignrConstraint 2|1 spec-
ifies that each transportation request is assigned to gxac# vehicle, Constraint 2.2
ensures that a vehicle only enters and leaves a vertex gxaute when the request is
assigned to the vehicleﬂz 1). Constraint§ 2|3, 2.4, ahd 2.5 specify the start location
start time and end location for the vehicles. Constfaifdteh$ures that each pickup oc-
curs before the corresponding delivery, Constifiaint 2.7asakire the traversal times are
taken into account correctly. Constrdintl2.8 says all Vebistart empty, Constraint 2.9
makes sure that vehicles are never overloaded, and Comi&lrald ensures that a vertex
is completely processed, with respect to loading and umgaevhen visited.

The objective function determines what is being optimiZeat. a single vehicle, there
are objective functions that minimize the completion tithe, travel time, travel distance,
or customer inconvenience. For multiple vehicles, the nemalh vehicles used could be
minimized or the summed profits can be maximized. The actyakofunction that is to
be used depends heavily on the (real-life) problem thatirsgomodeled.

As the name suggests, the General Pickup and Delivery Pnod#eves as a general-
ization of the Pickup and Delivery Problem, but also for tiediéle Routing Problem and
Dial-a-Ride Problem. All three of these problems can edsilylefined as specializations
of the GPDP. To start with, thickup and Delivery Problensee Figuré 2]3, is a GPDP
in which each transportation request specifies a singlecedacation, a single destina-
tion location, and all vehicles depart from and return toecsgd location called thdepot
Such as depot represents the location where for instaneehatlles are parked and where
all drivers start their day and return to in the evening. Fég#.4 shows a mixed integer
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Maximize objectives
Subject to

> 4=1 VieN, (2.1)
keM
dDoxi= D X = VieN,leNVUN" keM,  (2.2)
JEVUW JEVUW
D X =1 vke M, (2.3)
jevuik—}
D X =1 vke M, (2.4)
ievVoui{kt}
Dyt =0 vke M, (2.5)
Dp <Dq VieN,peN",qe N, (2.6)
X¢ = 1= Dj+tj <D; Vi,jeVuUW,ke M, (2.7)
Vit =0 VkeM, (2.8)
Y <D Qe VieN,le NFUN™, (2.9)
keM
X =1=yi+q =y Vi.jeVuW ke M, (2.10)
X< € {0,1} Vi,jeVUW,ke M, (2.11)
Ze{0,1} Vie N,ke M, (2.12)
D; >0 VieVuW, (2.13)
yi >0 VieVuUW. (2.14)

19

Figure 2.2: Mixed integer program for the GPDP (SavelsbarghSol| 1995). Note that
x,-kj = 1= D; +1tj < Dj can be written ax,-kj (Di +1tj) < Dj, but is written like this for
clarity (same holds for Constraint 2]10).

Figure 2.3: Pickup and Delivery Problem (PDP).



20 Operational Transport Planning in a Multi-Agent Setting

Maximize objectives

Subject to

All GPDP constraints (2.15)
W|=1, (2.16)
INT|=IN"|=1 VieN. (2.17)

Figure 2.4: Mixed integer program for the PDP _(Savelsbergh%ol, 1995).

Figure 2.5: In the Dial-a-Ride Problem (DARP) the loads tereasported have a volume
equal to 1 (passengers instead of freight).

program for the PDP in which Constraint 2.17 specifies thanhtimber of pickup and the
number of delivery locations equals 1 and Constraint]2.¥6rees all vehicles to start
and end at a single special location called the depot.

TheDial-a-Ride Problemsee Figuré 215, is a PDP in which all loads have a constant
volume equal to 1. It arises in contexts where passengetsaagported instead of freight.
The DARP distinguishes itself from the GPDP by focusing ostemer inconvenience.

Maximize objectives

Subject to

All GPDP constraints (2.18)
W[ =1, (2.19)
INT[=|N"[=1 VieN, (2.20)
gj =1 VieN,jeNtUN". (2.21)

Figure 2.6: Mixed integer program for the DARP (Savelsbemt Sol, 1995).
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Figure 2.7: Vehicle Routing Problem with nine locations,cenm which one depot, and
three vehicles. The solution is a set of three routes, onedoh vehicle, such that each
vehicle starts and ends in the depot and all locations aitediby exactly one vehicle.

Maximize objectives

Subject to

All GPDP constraints (2.22)
W|=1, (2.23)
INT|=IN"|=1 VieN, (2.24)
NF=WvN =W VieN. (2.25)

Figure 2.8: Mixed integer program for the VRP (Savelsbenmh &al, 1995).

Often, additional constraints (or modifications to the wyitiation criterion) are present to
limit (i) the amount of waiting timg(ji) the time spend by a customer in the vehicle, and
(iii) deviations from desired departure or arrival times. Figlifeshows a mixed integer
program for the DARP very similar to the PDP, but with the éiddial Constrainf 2.21
specifying that all loads have a volume equal to 1.

TheVehicle Routing Problensee Figure 217, is a PDP in which either all origins of the
transportation requests are the depot, or all destinatibtige transportation requests are
the depot. The VRP is very popular for instance for problentis supplying warehouses.
The depot is then a distribution center from which a set ollwvauses has to be supplied.
Figure[2.8 shows a mixed integer program for the VRP in whiohsErainf2.2b specifies
that for all requestse N either the pickup locatioM" or the destination locatiol;
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must be equal to the depot.

The pickup and delivery problems described above are tighigunvestigated by
many researchers. They are so interesting because marifegabblems can be for-
mulated using these pickup and delivery problem variants starting point; GPDP is a
relaxed version of many real-life pickup and delivery peobk. Furthermore, there ex-
ist many planning tools that can solve GPDP and variantsthedefore, it was possible
to create benchmark sets that provide detailed comparictreqerformance of these
different planning tools. After considering a practicatension to GPDP, namely the
concept of time, these planning tools will be described.

2.1.1 Time

In the early 1980s it was noticed that time played an impontale in most practical
pickup and delivery problems. Customers usually enforcat teast prefer, the loading
and unloading of freight to occur within so-calléthe-windows A time-window is just
an interval of time. Of course, the original problem defomtialready hagrecedence
constraintsstating that each pickup event must precede the correspgpdeéiivery event
in time, but these time-windows further restrict the loadand unloading events to take
place in specified time-windows. Using these time-windavibecame possible to model
when packages to be transported were available, or whekstmere allowed to supply
supermarkets (for example, parking space for the trucksinagly be available during
the morning).

A time-window can beestrictive or non-restrictivgMitrovic-Mini¢, 1998), which is
also referred tdnard versussoftconstraints respectively. If time-windows are restriefiv
then a plan that violates any of the given time-windows is feasible. In that case,
arriving at a customer before the time-window opens resalextra waiting time and
arriving to late results in complete failure of the trangpton request. In case of soft
constraints, loading or unloading too early or too late itssa less profit or a greater
penalty for the responsible agent.

Mitrovi €-Mini¢ (1998) mention that the notion of time can both complicateim-
plify the problem. It complicates the problem, because figdi feasible plan becomes
much more difficult. Without considering time any arbitragsignment of transportation
requests to vehicles with arbitrary routes would have beasible. If the time-windows
arerestrictive finding a feasible plan already is an NP-hard problem. Orother hand,
there are cases where time simplifies the problem. Findiregpamal plan with restrictive
time-windows can be easier, as due to all the time consg;aime search space becomes
much smaller. The actual situation depends on the exacklggrabstance at hand, as both
for soft and hard constraints the optimization problerNBhard.
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2.1.2 Solution methods

The number of papers and even survey papers in the field ofipiakd delivery trans-
portation problems is enormous. The results of solutiorhiods are not easy to compare.
Not only because there are many problem variants, but alsauise there are different
categories of solution approaches, each with their ownsgdalrthermore, often the so-
lution methods are considered too complex for thoroughyasabnd the quality of these
methods is measured by running them on large and publiclyaéa benchmark sets.
These benchmark sets are very valuable, although unfaeilyngood comparison be-
tween solution methods seems non-existing. This sectiampeoes, as far as possible,
exact approaches, heuristic and meta-heuristic appredohgickup and delivery trans-
portation problem variants.

Exact approaches

Exact approaches are guaranteed to find the optimal solulibey search all possible
alternatives except for those that could be proven not tgptienal.

Psaraftis|(1980) developed &N |0|239l) algorithm for the DARP, where each cus-
tomer had to be served immediately, using forward dynanogg@mming, wher¢O| is
the number of transportation requests. Because it wasewrtttt serve each customer im-
mediately, it can be used without modification for the PDFhwisingle vehicle. In 1983,
this dynamic programming method was further developed sahit could also be ap-
plied to the DARP with time-windows (Psaraftis, 1983). Salgears later the approach
of Psaraftis was improved, when Desrosiers, Dumas and Sqi®®86) improved the for-
ward dynamic programming by using an effective state elatiam criterion, especially
effective when the time-windows are tight and vehicle cépcsmall.

Desrosiers et al. (1986) used a branch and bound tree ajpdoyale multiple vehicle
PDP with time-windows. The branch and bound technique is ajgplied to the VRP
by [Fisher (1994). Later, Desrosiers et al. (1991) develapeéw exact method based
on the Dantzig-Wolfe decomposition or column generationbedded in a branch-and-
bound tree. Dantzig-Wolfe decomposition is a techniquesfdving large-scale linear
programming problems. The idea of Desrosiers et al. was é¢othes strength of this
decomposition technique to end up with a very small bramzdHaound tree.

There are also Al methods for solving GPDP, which were n&talliy developed with
the intention to apply them to GPDP. The STRIPS and PDDL laggs (see Appendix H)
are able to represent problem instances in a variety of plgrdomains, among which a
logistic domain called Rucks. There have been several editions of planning competi-
tions (International Planning Competition (IPC) hostethatiICAPS conference in 2007),
where special-purpose and general-purpose planners temvfh each other on several
planning domains represented by STRIPS or PDDL. It is theddithe IPC to analyse
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Figure 2.9: SATPlanning package.

the current state of the art in planning for a variety of damsai

Among the IPC competitors wass&LAN (Kautz and Selman, 1992, 1999) that fin-
ished first in 2004 and 2005 (together withaAMPLAN) in the optimal planning track.
Kautz and Selman developed efficient reductions to Satikfjabnd then used dedi-
cated Satisfiability solvers to find optimal transportatpdans. Figuré 219 illustrates the
SATPlanning package, developed by Broekens, Van RantZijit, et al. in 2000, which
follows the idea of Kautz and Selman. Figlrel2.9(a), a PDRntes, where the transfor-
mation requests are already assigned to the vehicles nisforaned into a Satisfiability
instance. This instances is solved by a dedicated Satigffadumlver and then transformed
back into Figuré 2]9(b). After personal communication kacbmmented it is hard to
give numbers on the performance of these planners andfaheréhe performance is il-
lustrated by showing the results of these planners on thstioglomain that was part of
the IPC 2005.

Figure[2.10 illustrates the performance of the IPC 2005 aitgrs on the RUCKS
domain. In the Rucks domain, trucks have to move packages between locations unde
certain spatial constraints and delivering deadlinesurei@. 10 shows the results of the
competing planners on 30 different problem instances i thecks domain. On the left
side are the planners that search for the optimal solutioth@right planners that aim for
satisfying solutior& The instances consist of 3 to 7 locations with 6 to 42 conoest
3 to 20 packages, and 3 to 7 trucks; from problem instance dblgm instances 30
they are increasing in size. The optimal planners only fasoidtions for the 10 smallest
instances. The satisfying planners, although producirgiy#@ptimal solutions on these

1The planners tagged with ipc04 are reference plannersg thege the winners of the IPC 2004.
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Figure 2.10: Results of the propositionakdcks domain at the International Planning
Competition 2005 (IPC-2005).

instances, take quite a lot of time, which emphasizes theitapce of special-purpose
planners for logistic domains.

The general impression of using exact approaches for piakapdelivery problems
is that they are able to solve problem instances with less deaens of transportation
requests. That is why many researchers chose to develogtieapproaches that do not
guarantee to find the best possible solution, but are abledaoniarly-optimal solutions
for problem instances with thousands of transportationests.

Heuristic approaches

Heuristic approach are solution methods in Whichwristitg is used. A heuristic is a
way to approximate the optimal solution, not by searchirg dbmplete search space,
but considering only a part of it. For example, a heuristic ba that two transportation
tasks that have to be pickup up (or delivered) at the samédocare always assigned to

2The name heuristic originates from the famous exclamatigoréka!” (I have found it!) of

Archimedes.
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the same vehicle, without further consideration. Such aisgtiobviously speeds up the
algorithm, but not necessarily always find the optimal sofut

Heuristic approaches are again divided into two categoniegular heuristics and
meta-heuristics.Regular heuristicsare usually domain specific guides that direct the
search towards a local optimum and then return the best aete@d solution.Meta-
heuristicsare high-level methods that control the execution of a sempéuristic, in a
hopefully efficient way. They are generally applied to pesbé for which there is no sat-
isfactory problem-specific algorithm or heuristic; or wheis not practical to implement
such a method.

In the 1970s several heuristic approaches are develogdah again be categorized
in decompositioninsertion andlocal searchmethods. An example of a decomposition
heuristics is the two-phase method called cluster-firstierseconao (Fisher and Jaikumar,
1981). This heuristic, for example, decomposes the proloeriustering locations that
are within a circle (i.e., that are near to each other) ang ¢mn constructs a route
along these locations. The strategy of insertion heusdtiaw et al., 1986) is to start
with an empty plan, and then sequentially inserting newsppartation requests that seem
to fit well into the existing plan. Local search methods, sddy| Savelsbergh (1990),
start with suboptimal but feasible plans that are contislyoumproved until some local
optimum is reached.

Meta-heuristic approaches

The following are examples of meta-heuristic approachas llave been successfully
applied to pickup and delivery problems. It is not clear vishf the meta-heuristic
approaches performs best, but the largest known probletanioss are solved due to
meta-heuristic approaches. These instances containahdsi®f transportation requests
executed by dozens of vehicles. The exact results of diftereethods to well-known
benchmarking sets (Solomon, Christofides, Elliot, and Jlo#n be found on the VRP
Web.

Tabu search |Gendreau et al. (1998) and Gendreau et al. (1999) analyzedhmearistic
approaches for both the dynamic VRP with time-windows amddinamic VRP with
time-window and pickup and delivery. Their strategy is tbvedhe dynamic problem

as a sequence of static problems. The purpose of their pegersest different heuris-
tics with Adaptive Tabu Searchlabu search is a local search method that examines the
neighborhood in order to move to the best neighbor; solsttbat were recently exam-
ined are forbidden, or tabu, for a certain number of iteregiol' heir conclusions were that

(i) adaptive heuristics outperform othe(s) the difference between adaptive and non-
adaptive heuristics is bigger in less dynamic situatioisgjavise there was not enough
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computation time to find improvements), aid) the dynamic case has a more complex
objective function than needed in the static case.

Simulated annealing Simulated annealing is based on the annealing of solidqrthe
cess to heat and then cool solids, which is usually done tersttiem. It is a local search
method developed in an attempt to improve local search whisrgets stuck in a local
optimum. Normally, for a candidate solution that is beingeistigated, only changes are
allowed that move towards the local optimum (i.e., changasitnprove the candidate so-
lution). Simulated annealing does the same, but with aicgigenall) probability, it allows
the candidate solution to move into some (random) othectime. |Chiang and Russell
(1996) describes several approaches to VRP using simidateshling.

Ant systems Ant Colony Optimization is a population-based, generatgegechnique
for the solution of difficult combinatorial problems whicé inspired by the pheromone
trail laying behavior of real ant colonies. The first Ant Symt was developed by
Dorigo et al. (1991). It had encouraging initial results be Traveling Salesman Prob-
lem, but was inferior to the state-of-the-art methods attihze.

Ant-based routing, more generally referred to as swarnedaguting, has been ap-
plied to load balancing in telecommunications networks tiyddnderwoerd et al. (1997),
as a control mechanism for communications networks by Do@ad Dorigo|(1998), for
combinatorial and continuous optimizationby Rubinstdi®99), and later as route find-
ing strategy, for example by Bjarne E. Helvik (2001) or by RirGet al.|(2004). These
systems are still in use and in active development.

Evolutionary algorithms Genetic algorithms have also been applied to the VRP. A
genetic algorithm is an adaptive heuristic search methegdan population genetics
(Braysy, 2001). Generation after generation new indivisluahich are the candidate
solutions usually represented by bit strings, are beingtete In a recombination phase,
different individuals are used to create new ones, by comgpichromosomes of the
parents, hopefully improving on the best solution so fartit@rmore, mutation randomly
modifies genes of a single individual to ensure genetic dityeof the individuals. Evo-
lutionary algorithms are still being developed, e.g., i@ BEvoVRP project (Pereira et/al.,
2002; Tavares et al., 2003).

Several exact and heuristic approaches to pickup and dglweblem variants have
been described. All of these are still being further devetb@nd it is not easy to compare
their performance. Table 2111, 2112, dnd 2.13 show resuttsepted at the VRP web.
Here only the benchmarks are listed for which the correspgnsolution methods are
given. It seems that evolutionary algorithms perform besttiese three benchmark sets.
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Taillard instance Best known Method
(number of solution [total
customers) distance driven]
tai75a (75) 1618.36 Parallel iterative search heurisqic
tai75c (75) 1291.01 Parallel iterative search heurisqic
tai75d (75) 1365.42 Parallel iterative search heuristic
tail00a (100) 2041.34 Ant systems
tai100b (100) 1940.61 Evolutionary algorithms
tail00c (100) 1406.20 Ant systems
tai100d (100) 1581.25 Ant systems
tail50a (150) 3055.23 Parallel iterative search heuristic
tail50b (150) 2656.47 Ant systems
tail50c (150) 2341.84 Parallel iterative search heuristic
tai150d (150) 2645.39 Parallel iterative search heuristic
tai385 (385) 24431.44 Local search

Table 2.11: Benchmark results on the VRP for the Taillartbinses, available at the VRP
Web.

Li et all (2005) provide another large-scale VRP benchmramkhich their own heuristic
method, variable-length neighbor list record-to-recoed¢l, performs best followed by
granular tabu search.

There are, however, some important shortcomings that loelve dbvercome for these
methods to be useful in practice. On the one hand, congestisrbeen ignored. The
routes of the vehicles are no more than a visiting sequerecean ordering of locations
to be visited by the vehicles. When the exact routes areméeted, unpleasant surprises
might occur with respect to congestion. If many vehiclegtalsimilar route, bottlenecks
might arise in the transport network. On the other hand, it imassumed that all trans-
portation tasks are known in advance. And also, the planexgsiuted exactly according
to plan, without any failures (e.g., vehicle breakdown).

The following two sections cover these issues. The firsbistext-aware routingin
which the vehicles take into account the plans of other Vesiand, hence, advances the
possibilities to avoid potential bottlenecks or congestiio the transport network. The
second igncident managementhich is about taking into account disturbances and fail-
ures (including changes to or newly arriving tasks). Thevabraethods can still provide
a useful starting point, i.e., an assignment of transpgortaequests to the vehicles and,
for each vehicle, an ordering in which to execute the trartapion requests. Other tech-
niques must be used to maintain robustness and feasilfitbhese plans.

Note that conflicts are not incidents. Conflicts arise asiptable problems due to
planning (or the execution thereof), while incidents arpredictable events by definition.
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Golden instance Best known Method
(number of solution [total
customers) distance driven]
1 (240) 5627.54 Evolutionary algorithms
2 (320) 8447.92 Tabu search
3 (400) 11036.23 Tabu search
4 (480) 13624.52 Tabu search
5 (200) 6460.98 Tabu search
6 (280) 8412.88 Tabu search
7 (360) 10195.56 Tabu search
8 (440) 11663.55 Evolutionary algorithms
9 (255) 583.39 Evolutionary algorithms
10 (323) 742.03 Local search
11 (399) 918.45 Evolutionary algorithms
12 (483) 1107.19 Evolutionary algorithmsg
13 (252) 859.11 Evolutionary algorithmsg
14 (320) 1081.31 Evolutionary algorithms
15 (396) 1345.23 Evolutionary algorithms
16 (480) 1622.69 Evolutionary algorithms
17 (240) 707.79 Evolutionary algorithms
18 (300) 998.73 Evolutionary algorithms
19 (360) 1366.86 Evolutionary algorithms
20 (420) 1821.15 Evolutionary algorithms

Table 2.12: Benchmark results on the VRP for the Golden amdBrfaedam instances,
available at the VRP Web.

This does not mean the techniques to deal with both do notagpzein both cases, at
the operational level, fast replanning decisions are rseegd0 recover the plans of the
involved vehicles.

2.2 Conflict resolution

The classical problems together with their variants desdriin the previous sections
consider the routes of the vehicles at an abstract leveladt) bnly the order in which

pickup and delivery locations (or customers in the Vehicteifihg Problem) are visited
is considered a solution to the problem. If the ratio of thenbar of vehicles to the size
of the transport network is relatively large, which is usp#the case at AGV terminals
for example, the traversal time for a certain route is highfijuenced by the vehicle load
along this route. In such cases a more detailed model of frestructure and the routes
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Van Breedam Best known Method
instance (number solution [total

of customers) | distance driven]
1 (100) 1106 Evolutionary algorithms
2 (100) 1506 Evolutionary algorithms
3 (100) 1751 Evolutionary algorithms
4 (100) 1470 Evolutionary algorithms
5 (100) 950 Evolutionary algorithms
6 (100) 969 Evolutionary algorithms
7 (100) 1032 Descent heuristic
8 (100) 1067 Descent heuristic
9 (100) 1690 Evolutionary algorithms
10 (100) 1026 Evolutionary algorithms
11 (100) 1028 Evolutionary algorithms
12 (100) 1616 Descent heuristic
13 (100) 983 Descent heuristic
14 (100) 2337 Descent heuristic
15 (100) 1083 Descent heuristic

Table 2.13: Benchmark results on the VRP for the Van Breedmtamces, available at
the VRP Web.

of the vehicles is required.

The sequel of this chapter focuses on planning for a fleet licless and execution
of these plans on transport networks, where the locations haited capacities. The
approaches are divided into three different categorigsapproaches that prevent con-
flicts from occurring(ii) approaches that solve conflicts during execution of thegplan
after a route has been chosen), &yl approaches that solve conflicts during the (route)
planning phase. First, the next section describes resemgaand the two main types of
conflicts.

2.2.1 Reservations and conflicts

When agents created plans to execute their assigned tréaispotasks, they would like
to have a way to ensure that these plans remain feasiblethatiénd. To make that
possible, the other agents have to know about this plan &mtehthe agent has to make
reservationdor the resources in its plan. These reservations must bicpuavailable,
but, if desired, they can be anonymous.

A situation where a plan cannot be executed together witlpldnes of other agents,
due to safety constraints or other type of constraints, oti aconflict The con-
cept of conflict-free shortest-time AGV routing was firstroduced by Broadbent etlal.
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Figure 2.14: Head-on and catching-up conflicts.

(1985). | Kim and Tanchoco (1991) make a distinction between tiype of conflicts,
which is followed for instance by Maza and Castagna (200%:head-onconflict and
the catching-upconflict. In Figurd 2.14(a) arid Z.114(c) the head-on conflichustrated.
This occurs when two agents plan to drive right through edlelroln other words, when
trying to execute their planning, a frontal collision ocguiThen, in Figuré 2.14(b) and
[2.14(d) the catching-up conflict is shown. This occurs whes agent overtakes another
agent on the same lane. This cannot happen without the twatsagecupy the same
space at some point in time. Note that these conflicts areadefissuming that resources
have unit capacity. Taghaboni and Tanchoco (1988) modéidoitibnal lanes as multi-
ple single unidirectional lanes and hence eliminated feadenflicts on lanes by design.
Mohring et al. (2004) take the physical dimensions of the ABW account: an AGV
traveling along one arc magpill over onto a neighboring arc. To avoid conflicts, the
authors associate a polygon with each arc to represent ¢aetlaat an AGV uses when
traveling along the arc, and they prohibit the simultanemesof two arcs if their polygons
intersect.

Agents that want to take into account other agents whilerptegncan make use of
context-aware planning methods. These methods can beodaesd) by the phase in
which they detect and solve conflicts. First, methods ardadla to prevent conflicts
by restraining the behavior of the agents. Second, one camegonflicts up to the latest
moment at which the plans are being executed and solve dsrdiscthey occur. And
third, there are methods that use look-ahead to solve faetum#icts that can be detected
by carefully examining the plans of the agents.

2.2.2 Preventing conflicts

If all agents are controlled by a centralistic program, giggram can take into account all
interactions between the agents and strive for the optihaalkgor all agents. This is not
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Figure 2.15: Hamiltonian cycle in a transport network. Aigdmave to move according to
the red arrows and are not allowed to rest. Conflicts can rameerr. Each (goal) location
is reached in a number of steps smaller than the number dfidosa There cannot be
more agents than the length of the Hamiltonian cycle.

useful in practice, because such an approach is not scadalbigger systems, it can only
be used for toy problems. Another approach is to let eachtgudgemfor itself only. These
self-interested agents can deal with conflicts when theymmecg., by contacting a central
unit for conflict resolution or by negotiating with the othegents that are involved.

Shoham and Tennenholtz (1995) argue that both of these agps are undesirable
when applied to context-aware routing. Either becauser@léstic approaches are not
scalable, or because negotiation is a costly time-consyipriocess. They suggest the use
of social laws possibly combined with negotiation to solve conflicts,hie tatter case as
an attempt to minimize the amount of communication required

Social laws are certain rules, such as traffic laws, that eanded to prevent any
conflicts to occur in a multiple agent system at the cost ofesparformance. Also, social
laws can prevent as much as possible, not necessarily alfliate while still gaining
nearly optimal performance. Shoham and Tennenholtz (189ljed this in the domain
of mobile robots. An example they give is to construct an Hamian cycle through the
transport network, in their case anx n-grid, and a traffic law that forces all agents to
follow this cycle and disallow them to rest. In that case,ftcis simply cannot occur
(assuming they all travel at the same speed). The perforenamot very well, however.
It takes O(n?) steps to reach a goal location on the n-grid. Note that the rows or
columns in these grid networks can, for example, model |am@ssupermarket. This
traffic law can be applied to non-grid transport networks al,wee Figureé 2.15.

After this simple example they propose a somewhat more doatpt set of social
laws that achieves a better performance on grid networkis.i3one by putting a coarser
grid on top of the original grid network. The coarser grid taen help to avoid having to
follow a Hamiltonian cycle for a long time. For these traffivs, given that there exists a
plan oft steps in the system with only a single agent, the number pgstereach a goal
on then x n-grid is at most + 2n+ o(n). The main drawback of this approach, however,
is that it must be assumed that the number of agerissfairly limited, i.e.,m= O(y/n).

For systems whena = O(n) Shoham and Tennenholiz (1995) present a final set of traffic
laws that allows an agent to reach each arbitrary goal withisteps.
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To conclude, social laws can really be helpful as a means nanmie the number of
conflicts that need to be solved, but one can often not soéyyan them as that would
imply a serious limitation on the number of agents allowethmsystem.

2.2.3 Solving conflicts during execution

Another way of dealing with conflicts is to ignore them untigétvery last moment, namely
until the plans are being executed and the conflict is presem advantage of this ap-
proach is that a minimal amount of planning is required, as gimply does not take
conflicts into account in the initial planning. The downs@fehis is that the quality of
the resulting plans might be inferior. However, at leastnicident-rich environments, it
is questionable whether solving conflicts in advance is of ase. Later in this thesis
experiments will provide empirical evidence with respectiiese questions.

In this section two examples of approaches where confliets@wed during execution
are given. The first example is AgileFrames, where agentsar&olled by static scripts
that tell the agents what to do. The other example is a basigapproach, based on
a shortest-path algorithm. In this approach, the agentplgitraverse a shortest path to
their destination location, and solve conflicts along theys as they occur.

2.2.3.1 AgileFrames

An example of an approach that solves conflicts during exatuts AgileFrames
(Lindeijer,2003; Lindeijer and Evers, 1999; de FeijterQ&)) a logistic modeling frame-
work that is designed with flexibility, adaptability, schiity and communication abilities
in mind. Agents execute static scripts to move through aspart network modeled using
resources. Such a script is a sequence of claims and reldabese resources. Conflicts
are solved during execution, at the time they occur, andgrered during planning.

The routing scripts are a small program that move an agemtdrepecified source to a
specified destination resource. In case the scripts are atat non-preemptive (the agents
cannot be interrupted while executing the script), it ispugsible to ensure deadlock-free
execution, unless there are special restrictions (for @anall agents follow a Hamilto-
nian cycle as described in Sectlon 212.2).

AgileFrames is inspired by the airport of Amsterdam and newtainer terminals
at the port of Rotterdam. It models the infrastructure wébaurces that have capacity.
Agents are routed through this infrastructure by use ofcssatipts, that can be proven to
ensure minimum safety distances between the agents.

AgileFrames consists of several components, namely SEvvitraces and Forces.
Servicesan acronym of Service coordination and engineering sydefimes the client-
system interface and contains the logistic planning anddaing.Forcesprovides means
for the functioning, the control, and the feedback of the operations. Although there
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Ticket ticS = null; = declares a Ticket variable reference.
ticS = new PrimT(S); > creates a primal Ticket on semaphore S.
ticS.insist(); = waiting request on ticket ticS, resembles Dijkstra’s wait(
doA.exec(); = initiates action for this actor and wait for its termination
ticS.free(); = return of the capacity, resembles Dijkstra’s signal-opena

Figure 2.16: Traces script fragment for a one-directionckiraobtained from
Lindeijer and Evers (1999).

thus is a special component for the logistic planning an@daling, the bulk of work in
the AgileFrames project is not on planning but on the final gonent named Traces.

Traces short for traffic control and engineering system, concénescontrol of con-
flicting use of shared facilities such as traffic infrasturetand is designed to meet the
agility requirements and to handle high traffic intensit¢sny scale. Locations in the
traffic infrastructure are modeled by resources and agent®@ticommunicate with each
other. Semaphores project the overload of these resouycageints.

In Traces, the routes of agents are programmed using sthgt@re written in the
Java language. See Figure 2.16 for an example. In this cadenéint, semaphor@
represents the freely available capacity of an infrastinectesource (e.g., a piece of a
road). The ticket created in the script is a means to placgwest on this semaphore.

The ticket in this example was a primitive ticket i nir. That is a simple ticket just
waiting for access on the semaphore. In Traces, there etists types of tickets. For
exampleSel T, a select-ticket. With a select-ticket, an agent can getsscto one out
of multiple different semaphores, whichever has free d@ypawailable first. Also, there
is a collective ticketCol T, which can be used to get credit from multiple semaphores
simultaneously.

Priorities can be handled in different ways, the defaulhdtirst-In-First-Out. An
overview is given in Table_2.17. Furthermore, a semaphoerdpumultiple so-called
access lines Access lines are a means to prioritize tickets. Again,ehae several
mechanism to prioritize tickets. There iBasi ¢ Semfor the case a semaphore has only
one single access line. There iRankedSem where the access lines are ordered and
higher ranked access lines always take precedence over taweed access lines. A
Cycl i cSemschedules the access lines in a cyclic way, wiiglel i x Semalso does,
but the latter makes sure access is exclusive, i.e., an agbngets access when there are
no agents on other access lines that got access to the semajieady. Finally, there is
aVar i Semtype of semaphore that can use user-programmed procedures.

AgileFrames claims to be more than a simulation tool. Itsetigyers refer to it as an
operating systemilrhe argument is that it can control realistic agents in bseéing. The
Traces component is rich and well documented. About thei@=\{especially referring
to the planning and scheduling methods) and Forces commolems information seems
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| Queue discipline | Explanation |
First-In-First-Out | The first agent that claims, goes first.

Smallest claim firs{ Similar toshortest processing time firlsbm production
logistics.

Last-In-Last-Out | Similar to a stack, the last agent takes precedence.
Randomly selected Uniform-randomly over all (actually, the first so many titke
as there was capacity remaining) tickets.

Table 2.17: Traces priorities.

to be available. Implementation in a laboratory demonssras ability to control real-life
autonomous guided vehicles. Due to the absence of robyptaine@ing and scheduling
methods, a deadlock-free situation cannot be guarantewtispecial restrictions to
the transport network and the behavior of the agents. Alsogesearch has been done on
its ability to recover from incidents.

2.2.3.2 Basic routing

If there were no other agents and no incidents, a rationaitageuld drive a shortest path
from its current location to its destination location. Henthe basis of route planning is a
simple shortest-path planning algorithm. Like here, #girpath planners are often used
as part of a more complex question and must often be done lhtimea Although the
variety of shortest-path planners usually provide the sgeselts (i.e., they return a path
of the same minimal length), it is important to make a wellsidered choice as this can
significantly speed up a system, which is important for teak applications.

Simple shortest-path algorithms The first stage in the traditional approach is to gen-
erate shortest paths along the pickup and delivery locstadrthe agent. To compute
these paths the agent uses a basic shortest path algonittimas Dijkstra (1959). In this
section, the best-first search algortihm A* is also desdrilbecase it is more similar to
the context-aware routing algorithm described later.

Algorithm[2.1 describes the A* algorithm. The A* is a well-dwwn best-first search
algorithm in Artificial Intelligence/(Hart et al., 1968; Resdl and Norvig, 1995). It main-
tains a priority queu®) that contains partial solutions. The queue is organizet suat
the best partial candidate solution is at front; hence theetaest-first The estimated
value of a candidate solution is the sum of the costs of thigghpath made so far and a
heuristic function that estimates the costs required topteta the partial solution. This
heuristic function ensures that the A* algorithm expandeasnodes as possible, making
it the algorithm with the least number of iterations. Sgiisf) some restrictions on the
heuristic, the A* algorithm i€ompletdn the sense that if a solution exists, it will always
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Algorithm 2.1 A* shortest-path algorithm.
1: function A*(veV,s,deN,t e R™")

2 Pre: Vehiclev, sources, destinatiord, and departure time
3 Post: Shortest route and schedule frato d for vehiclev starting at time.
4 Q< {s}
5: vne N\{s} : 1(n) « o«
6: I(s) <t = initialization
7: while Q # @ do
8: N« argmineq|(g) +h(q) = select most-promising candidate
9: Q «— Q\{n}
10: if n=d then
11: return route and schedule computed from labels > ready
12: end if
13: forall (n,n') € {(n,n”) e E:1(n") > I(n) +traveltim&(,v,,)n,l(n))} do
14: [(n") < I(n) +traveltimgv,n,|(n)) = expanding successors
15: Q<—Qu{n}
16: end for

17: end while
18: return no route possible
19: end function

find the shortest (optimal) path from source to destination.

For basic shortest-path planning, the A* algorithm is net liest option. It requires
fewer iterations than most other algorithms, however, itne required per iteration rel-
atively long. Post (2004) presents an overview of sevesdbfashortest-path algorithms.
These algorithms do not maintain a sorted quudnstead, they visit resources more
than once, resulting in more, but faster, iterations. ZH&97); Zhan and Noon (1998,
2000); Cherkassky et al. (1994) take a closer look at thetgp&s used to implement the
algorithm, which is proven to be important. Finally, Chesglay et al.|(1994) notes that
the graph representation used is also crucial to the pedocmof the algorithms. They
showed that the best graph representation to use is Fortardepresentation.

Algorithm[2.1 presents the A* algorithm, because it can bestompared to more ad-
vanced shortest-path algorithms later in this chaptercomtraveltimég(,v,, )n,t) com-
putes the minimal traversal time for vehisle V to traverse location € N when starting
at timet. It takes into account the maximum allowed driving speedattesource, the
maximum driving speed of the transport resource and thartist of the infrastructure
resource.

Operational conflict resolution After each agent computed a shortest path to execute
its transportation requests, it is of course likely theeessmme conflicts. Sometimes, more
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agents plan to claim a resource at the same time than is pogsibn the capacity of the
resource.

To overcome this problem the basic routing approach usestpeal conflict reso-
lution. This form of conflict resolution is similar to the usétraffic rules, such as traffic
arriving from right precedes, or intelligent traffic light&ach time a conflict is detected
during the operational phase, a heuristic is used to pederthe agents for entering the
popular infrastructure resource.

Many different alternatives are available to implementhstgsource usage rules. A
valuable overview on scheduling problems by Morton and ieer(i.993) is used to sup-
port the selection of heuristics that is used in Chdpter 5.

Morton and Pentico (1993) distinguish between (advandesgatchheuristics ande-
leaseheuristics. Dispatch heuristics schedule forward in titneseh choice point (when
timing, routing is done, etc.) by calculating priority vakiaccording to some rule and
the highest priority is choserAdvanceddenotes that due time problems and critical re-
sources are forecasted and taken into account a priorir dlaerview, though modified
to the transportation domain, of dispatch heuristics ide&i

Critical ratio, uses the ratio of required lead time to contrgack to determine the
priority of a task@

(Weighted) COVERE, if the slack is much greater than the lead time, the priasity
0; it rises linearly, up to a certain maximum for this task{tesslack goes to zero,

(Weighted) early/tardy, compares the (weighted) sum dfresss and tardiness of
all tasks,

SCHED-STAR, if the slack is negative, the job is sure to beyaand has full
priority; priority decreases exponentially with the numloé average processing
time lenghts available until its due time.

Executing tasks immediately when they arrive in the systnot always the best thing
to do. It might improve the performance to release tasks sdratelater, as other tasks
could arrive that should be dealt with first. Morton and Rem{iL993) acknowledge this
and list the following release heuristics:

e Immediate release, provided as a benchmark,

e Average queue time release, releases a task to an agentdatethiene of the task
minus the amount of time the agent is idle,

3Lead time is the estimated time required to complete a tagk, @eliver the freight) from the moment
the task is known to the system. Hence, this time includasyita, waiting, etcetera.
4COVERT is short for Cost over Time.
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e Queue length release, estimates a release time to an agewot ®a the number of
tasks that are already assigned to this agent.

Garrido et al.|(2000) describes the notiorste#ck probability defined as:

S

PO)=1-——"—
S( I) (n_o_l+17

where the duration of operatid is &, and its earliest finish time and earliest start time
areg; and @ respectively. Note that slack is defined in Operational Reteasqy — a;,
the amount of time the operation can be delayed without dedegnything else. If the
operation has only one possible start time, tipeng; is about equal to the durati@gpand
P;(O;) is approximately 0. Otherwise, the more slack there is, tbeeiy(O;) approaches
to 1. An operation is more conflictive than another if its Elpacobability is minor.

2.2.4 Solving conflicts in advance

Another approach when it comes to context-aware planningsaheduling is the idea
to transform the search for a conflict-free plan to Job Shdpe&ualing with blocking
(Hatzack and Nebel, 2001). In this approach, the problemlisisto two phases. In the
first phase, a route is determined for each agent. In the dguloase, one by one the
agents create a schedule, which determines the times at wiecsubsequent resources
in the route are claimed. An appropriate delay is insertéal ine schedule whenever a
conflict is detected. Hence, conflicts are solved after dateng the route (as opposed to
the previously mentioned time-window graph routing medhbdt prior to the execution.
An advantage of this approach is that heuristics known téoparwell for Job Shop
Scheduling with blocking can immediately be applied to firgpdconflict-free routes for a
set of agents.

Also, time-window graph routingKim and Tanchoco, 1991) fits in this category.
Time-window graph routing is an approach that integrates-frath routing (as opposed
to fixed-path routing, where a fixed path is followed from s®uto destination) with
conflict-resolution. The agents make public reservatiengHeir plans on a first-come-
first-served basis and, hence, performance (especialiyidugl, but also for the total
system) depends on the order in which the agents plan.

2.2.4.1 Two phases approach

The two phases approach separates the process of deteyraimute along the pickup
and delivery locations and computing the schedule times, the times at which each
of the locations will be visited. In the first phase, a routéésermined for each agent.
In the second phase, one by one the agents create a scheatudedls not conflict with
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previously computed schedules. At the end of the seconeepbhtisgents have a conflict-
free plan and, if the plans are executed exactly as speaifeadilocks cannot occur.

An important difference with the previous approach is traiftict-resolution is ap-
plied before the individual plans are executed. In facts gonflict-resolution can be
considered as a kind of plan repair, modifying individuand if they are in conflict. For
example, Broadbent et al. (1985) employ a simple shortaist-ggorithm to find a set of
initial routes. In case of catching-up conflicts, some agjan¢ slowed down; for head-on
conflicts, an alternative route is found that does not maketithe road at which the con-
flict occurred. Broadbent's algorithm can be used both oditgttional and bidirectional
infrastructures, but in the latter case it need not find theva solution.

The approach proposed by Hatzack and Nebel (2001) also caam&lered as a two-
phase approach to this problem. In the first phase, the ohairoutes are chosen, which
they assume to be fixed. Then for the second phase, they gantea correspondence
between computing conflict-free schedules for the agemtsguarticular scheduling vari-
ant calledJob Shop Scheduling with blockinbn this second phase it is ensured that the
constraints imposed by the resources are satisfied. Toildeghbrs correspondence the
Job Shop Scheduling with blocking problem must be defined.

Scheduling is concerned with the optimal allocation of aRelf scarce resources
to a set of activities (jobs) over time. Each jolj € J requires some specific sBf
R of resources and for each resource R; the durationt; ; needed forj to user is
specified. Typically, each resourcean be used only by one jobat the same time. A
solution to such a problem issthedulei.e., an allocation of intervalgs x, ¢ x) to each
job ji € J for using resource;  such that the constraints (non-overlapping and minimal
duration) are satisfied. Injab shopscheduling problem each jgpconsists of &equence
of ki operationso; 1,...,0;, where operatiom; j needs resourcg j € R for p; j time
units, withrjj # ri j41 fori = 1,... kj_1. Blockingmeans that a jolj continues to
claim resource after processing, if the next resouncet needs is not available. During
that time, no other job can use resourceDefinition[2.2 formally defines the Job shop
scheduling with blocking problem.

Definition 2.2 (Job shop scheduling with blocking) Given a setl of jobs and a seR of
resources, find a schedule, il x, @ k) to each jobj; € J for using resource,  that is a
solution to the following optimization problem.
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Maximize objectives

Subject to
0i,j > release_timg, j), (2.26)
Q.j—0j=hij (2.27)
@.j = Gij+1, (2.28)
Hij = Hrs = 0ij = Ors V [O'i,qulj] N |[Ors, @s| = 9, (2.29)
Hij = Hrs+1 A Hij+1 = Hrs = @ j # Ors+1. (2.30)

In Definition[2.2 for Job Shop Scheduling with blocking Caasit[2.26 ensures that an
operation is not scheduling before the job it belongs tolsased. With Constraint 2.27
no operationo; j is scheduling in an intervglo; j, @ j] smaller that its processing time
pi,j.- Constrain{2.28 specifies that a job always claims a madftimeblocking prop-
erty). Then the latter two constraints are to prevent casfliConstraint 2.29 ensures that
two different operations scheduled on the same machine doave overlapping time in-
tervals and Constraift 2.80, which is according to HatzaxkMebel a new constraint in
scheduling literature, prevents a deadlock situation eh&o jobs with opposite machine
routing face each other.

Now the similarity with the transportation problem disegs@bove is clear: let the
jobs correspond to agenas= A that have to execute a rouRt; as a sequence of opera-
tions. Each operatiofri,t;) in fact is a request for using the resourgeluring the time
interval [tj,ti+1). A feasible conflict-free schedule issa&t of agent schedul§Sd;}aca
that is conflict-free. Scheduling heuristics for job-shopeduling problems, therefore,
can be used to compute agent schedules in which resourcekened by at most one
agent at a time thereby avoiding any resource conflicts fromen sef{ Rty }aca Of agent
routes.

In their paper Hatzack and Nebel applied a fast delay minmgiheuristic to ob-
tain such a set of agent schedules. This heuristic incraatigmiserts jobs/operations
in a first-come-first served manner into the schedule. Beglile makespan minimizing
heuristic many other heuristics can be used, for instanedlat considers the profits that
come with the task.

From job shop scheduling to route planning

Besides the suggestion to transform the fleet routing pnolbdeJob shop scheduling with
blocking, Hatzack and Nebel also described Algorithnmh 2.2rasxample implementation
of their idea. This fast job-shop scheduling heuristic catep a route and a schedule
for an agent that takes into account the current resensidrall other agents. It is
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Arrival time of o;

ri,|

Time

Figure 2.18: The set of potential start tinkgg considered for operatiam j is the earliest
possible time together with all later end times of reseoratiof other agents.

then applied to all agents sequentially, in first-come-Bestved order (this is done by
the Autocontroller). It is neither optimal (for the fleet ajents) nor polynomial-time
(even for a single agent), but in their experiments the #lgor produced reasonably
good results, and performed very efficiently.

The AutoController procedure in Algorithim 2.2 shows thigsential scheduling of
agents. Procedure ScheduIeActiity concerned with the scheduling of each individual
agent. Figuré 2,18 illustrates the start times that arengiied for each operatian ; on
resource; j. The earliest possible start timlejj is the finish timeg ;_, of the preceding
operation or the release time of jgbif j = 1. Now, the set of finish time®,, of
all operations scheduled at machigg analogous to infrastructure resoumggin the
transportation domain, can be definem;,? ={@s:0rsc S | WhereS,lj is the schedule
of all operations at machingj. The set of starting times considered, as illustrated by
Figurel2.18, is theij j = {g;";} U {pe Py, : @ > 07}

The predicaténsertabl€S, o j, 0), used by Algorithni 2J2, is true if and only ) in
the given schedul8no other agent has a reservation for resourgénat overlaps interval
[0,0+ pijl, (i) the agent can wait at the previous resoufge ;1 also during[@ j_1,0],
and(iii) there is no head-on conflict with another agent (i.e., no @axgk of machine with
any other operation at time).

The last attempted start time is beyond the last reservafiath agents, which clearly
indicates that the algorithm always terminates (that isyiasng that an agent can always
wait in its current location). The idea is that the currenem@iono; j is scheduled at
time g; j and then the rest of the operations of jplare tried to be scheduled by using a
recursive call. If this call succeeds, the procedure is dorkereturns success; otherwise,
the next start time is attempted and a new recursive calbjisired.

No detailed results are presented in Hatzack and Nebel {200t authors claim it
is suitable for very fast approximations, to do fast timeldations and the performance
is similar to that of humans. Their concluding remarks ideluhat, although the al-

5The original version of Lin€_15 of Algorithia 2.2 (Hatzack aNdbel, 2001) contains a typo that is
corrected here.
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Algorithm 2.2 Hatzack and Nebel’s routing algorithm.
1. procedure AUTOCONTROLLER(j1,.--,Jn)

2: Pre: (j1,...,jn) is a sequence of jobs wheje= (0; 1,...,0ik)-

3 Post: All jobs in (ji,..., jn) are scheduled and free of conflicts.

4 S—g

5. forall jie{j1,...,jn} doO

6: SCHEDULEACTIVITY (S,0; 1)

7. end for

8: return S = returns feasible schedug
9: end procedure

10: procedure SCHEDULEACTIVITY (S,0; j)

11: Pre: Up to operatiorp; j_; schedulesis a conflict-free schedule.
12: Post: Schedules operatian ; and beyond into schedu&

13: if j <k then

14: inserted= false

15: Zij— {0 tu{pe®y,; [@> 0} = compute potential start times for
16: while Zj ; # @ A —inserteddo

17: 0 < mingj j = get next potential start time
18: if INSERTABLE(S,0; j,0) then

19: Oij < 0@« Oij +Tjj > assign start/end time @ ;
20: if j > 1then

21: @,j—1< Oij > adapt end time of preceeding operation
22: end if

23: inserted«— SCHEDULEACTIVITY (S,0; j+1) o continue recursion
24: if —insertedthen

25: S—S\{0i;}

26: if j > 1then

27: @j-1+< 0ij—1+Tij_1 oresetend of preceeding operation
28: end if

29: end if

30: end if

31 end while

32 else

33: inserted< true = last operation of task has been inserted
34: end if

35: return inserted
36: end procedure
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gorithm involves backtracking, it hardly never occurs. Tigorithm can however be
shown to have exponential time complexity. The authors leen asked for their data
or implementation, in order to reproduce their experimehrtswever, due to disclosure
agreements they were not able to publish the problem inssathey used nor their exact
implementation.

2.2.4.2 Context-aware routing

There are also approaches that aim at the integration obthie planning and the conflict-
resolution processContext awarenes®fers to the fact that an agent has to be aware of
the consequences of the route planning by other agents Biadgadividually optimal
route choice might be seriously affected by the route clsodd®ther agents.

Typically, context-aware routing approaches considgy@dkible routes from a source
to a destination location while considering reservatidratioer vehicles. For example, the
algorithm proposed by Huang et al. (1993) finds a path thrahgl{graph of) free time-
windows on the resources, rather than directly through taplgof resources. Huang'’s
algorithm is optimal both for unidirectional and bidireartal networks, but it assumes
unit capacity for all resources. Fujii et/al. (1989) combihe search through free time-
windows with a heuristic that calculates the shortest paimfthe current resource to
the destination resource, assuming no other traffic. Theisalmethod proposed should
resultin an optimal, polynomial-time algorithm, but thesdeption of the algorithmis not
entirely correct. Additionally, the authors do not prova®y complexity analysis of the
algorithm. The work of Kim and Tanchaco (1991) is similartie wvork of Fujii et al., but
their treatment of the problem and the analysis of theirrégm is more comprehensive.
Kim and Tanchoco’s algorithm finds the (individually) opaihsolution for both uni- and
bidirectional networks, and they give &\(n*v?) time complexity for their algorithm,
wheren is the number of agents in the system, arnd the number of resources in the
infrastructure network. Due to this relatively high rumé complexity (especially given
the limited computational resources in the early 1990sgh@&honi-Dutta and Tanchoco
(1995) developed an approximation algorithm that decidesery intersection to which
resource to go next, based on the estimated traffic denditye@ésources from the current
intersection to the destination. The authors show a smsdl & plan quality, but they
claim that the algorithm consumes significantly fewer cotapanal resources; however,
they do not quantify the run-time complexity of the approatian algorithm, nor do they
present any CPU cost comparisons.

The idea of time-window graph routing is, instead of routihgpugh locations in a
graph as a basic shortest-path algorithm would, to routaitiir a free time-window graph
(see Figuré 2.19). For each location, a set of disjoint frae-windows is computed from
all known reservations that exactly specifies the time-wwsl at which the load of the
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[2,8)
[0,5)
[0,6)
(a) Transport network. Arcs represent (b) Free time-window graph. The red intervals are reser-
connections between locations. The time vations by other agents. Connections specify the reach-
intervals are reservations of other agents. ability relation between free time-windows.

Figure 2.19: Transport network and free time-window graph.

location is smaller than its capacity. Furthermore, a rahiity relation must be defined
that specifies which free time-windows at one location camelaehed from which free
time-windows at another location (similar to arcs in a ndrgraph). Applying a basic
shortest-path algorithm on this time-window graph results context-aware plan for the
original instance. This plan is optimal, given the resaorat of all other agents do not
change.

Let us look at the example depicted in Figlre 2.19. The task isute from source
locationrs to destination locationy starting at time = 0, either by traveling via location
r1 or via locationrp and taking into account the specified reservations of otgents.
At first sight, it seems quicker to traverse via locatrgnbecause locatior, is already
reserved up to timé = 6. However, the journey cannot continue then because of the
reservatior0,5) in locationry and the agent is not allowed to wait in locationdue to
the reservatiori2,8) over there and, hence, the agent must wait in resayraatil time
t = 8 if it desires to travel the upper route. The free time-windpaph gives somewhat
more information. There is only an arc from locatiarto locationry from the free time-
window [8, «0), so one can immediately infer that the upper route has costtey than 8
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and the lower route is quicker (assuming the all locationve lemual traversal times). The
connection fronts to the first free time-windoW0, 2) in rq is in fact useless (and can be
discarded) if this free time-window has no outgoing arcgegx if locationr; is the goal
location.

This context-aware method can be used by all agents in a seguesulting in a set
of conflict-free plans. That this leads to sub-optimal perfance for the total system is
no surprise, as the final plans depend on the order in whichglets planned; in general,
planning earlier leads to a more efficient plan for each iwidial agent, but the method
does not specify in which order the agents should plan tarop# the performance of
the total system. Of course, there exist methods that attemmprove on this arbitrary
ordering of when agents plan. These methods can also bawefitusing time-window
graph routing to quickly create a conflict-free plan.

The execution of transportation plans often differs from¢bnstructed plans. This is
because of unforeseen events, such as container ships@gtfaite, orders being cancelled,
or modeling inaccuracies. The next section deals with tbegareseen events, which we
call incidents

2.3 Incident management

An event that can potentially render a current plan infdasibecause it was not antic-
ipated into advance usually due to a malfunctioning systefauty component of this
system, is referred to as arcident

The event of a system or some of its components being faulty period of time (the
repair time) is referred to as amcident Incident managemers a field of research that
attempts to take into account incidents and develops sgsidrare performance degrades
as few as possible when the number of incidents increases.

In this section a nice experiment by Beamon (1998c) is ptesehat illustrates why
reliability must be taken into account in early stages @diein the design phase of a sys-
tem). The ternperformabilityis used to denote that performance and reliability are mea-
sured simultaneously. After the necessity of performpbidi illustrated, known methods
are described to deal with incidents.

2.3.1 Performability

Research on the performance of AGV systems often had thelyimdeassumption that
all the components are going to last life long. In realitggl components are not com-
pletely reliable and are subject to failures over a periothoé. To give an example, road
intersections generally reduce the reliability of the egsby adding potential sources of
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| | (A) Noshortcuts  (B) One shortcut  (C) Two shortciits

I I I I I I Y I I I R
Layout L {
I / /

N T N s N

Flow Path

Optimization { { ' ‘ '
Model 1 } — 1 } — : —
TTD 544 488 484
FTP 8.7% 10.9% 14.0%

FDU Index 63.1 62.7 80.3

Table 2.20: More shortcuts do lead to a decrease in totadltcastance (TTD). However,
the unreliability measure (FTP) has increased due to thi¢éi@wlal cross-overs. The flow-
distance-unreliability index (FDU) is minimized for layoB (Beamonh, 1998c).

failure. The reason for this is that guide path requires soraehanical branching to en-
able vehicles to choose their destination and the fact tiv@tdections allow for collisions
to occur. Studies have shown that incorporating religbéitalysis in the design of guide
paths increases the performance of the system (Beamonh T390

Beamon [(1998c) describes guide paths for an AGV system, alele[2.20, where
layout A has no shortcuts, layout B has a single shortcut|aalt C with two shortcuts.
The second row of the table depicts the optimal path direstlmased on the Flow Path
Optimization Modell(Kaspi and Tanchoco, 1990). Note thatekact set of pickup and
delivery requests together with the used distances of tjesth the network are also
mentioned in Beamon (1998c), but are omitted here.

The total travel distance (TTD) is a lower bound on the tataél costs computed
as the sum of distances from pickup to delivery of all tramsgiimn requests. The total
flow that is not delivered correctly is given by the failurgptpercentage (FTP), which is
defined the percentage of flow from pickup to delivery thdsfdue to unreliable compo-
nents in the infrastructure.

The total travel distance is minimized on layout C with tw@gbuts. At the same
time, the unreliability measure is maximized for this guidgh. Hence there is a trade-off
between reliability and the objective function. Beamon98¢) suggests the use a flow-
distance-unreliability index (FDU) that is minimized faylout B in the example. The
flow-distance-unreliability index is defined as the sum & tlow, distance and unrelia-
bility measure for all pickup and delivery pairs.
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2.3.2 Incidents

There are several different sources of incidents to bendjatshed. Incidents can refer
to failure, such as communication failure between AGVs awdrdral planning system,
break-down of a mobile entity (engine failure) or failureshe transport network (e.qg.,
due to traffic accidents). Other incidents refer to modiiorat of transportation requests.
Even the arrival of new transportation requests can very besregarded as incidents,
because the current planning is rendered infeasible fotakatg into account these new
transportation requests. In an unpublished manuscripte@ort and Beck (2000) de-
scribe a similar list of causes for uncertainty.

Incidents that refer to failure are normally representedipyhe malfunctioning ob-
ject, (ii) an interval of time specifying the time of failure and theaggime, and(iii) the
impact or severity of the incident. For mobile entities tegegity can be represented by
a percentage denoting the percentage of the normal trdgpesed that is in effect during
the incident.

Modification or new transportation requests are usuallgnakto account by using
online planners, i.e., planning systems that have a cedgmamism that enables them
to react to these changes and adapt the plans accordingingFammunication limits
the ability to cooperate and assign or re-assign new trategpmn requests. Sometimes
a decrease of speed of the mobile entities is also enforcedgdinese communication
incidents.

2.3.3 Incident management methods

Due to the experiment of Beamon flow path optimization modadse adjusted to take
into account reliability during guide-path design. Butaatiuring planning and execu-
tion, methods have been developed to take into accountrbéstoes. The real world is
not so stable, many disruption and task modifications odeading to the necessity of
incident management methods. Incident management metiaodse distinguished into
pro-activeandreactivemethods. Pro-active methods attempt to create robust sidsed
while reactive methods recover from incidents at the morttesyt occur.

One pro-active approach to incident management is to generlust schedules that
are able to absorb a certain amount of disruptions withainted for replanning. Gao
(1995) describes a technique calkesnporal protection For each location and vehicle
historical statistics are maintained about its reliapiliThen, according to this data the
duration of actions, such as drive, load, etc., are extendthdsome temporal slack.

Davenport et al. (2001) developed a superior method céltegtwindow slaclor fo-
cused time-window slackinstead of hiding the temporal slack in the durations of ac-
tions the time-window slack method modifies the problem d&im a little, such that
the scheduling algorithm can reason about the slack. Ftarins, the scheduling can
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sometimes be more flexible by shifting the temporal slack laed there. For the focused
time-window slack method, the temporal slack depends omwhe activity is sched-
uled. Activities that are scheduled when the probabilityaofincident is greater, e.g.,
approaching the wear-out period, get more slack added.

Van der Krogt|(2005) presents reactive plan repair methodbsdth single-agent and
multi-agent systems. His focus was on repairing plans witlommputing them from
scratch after an incident occurs and requiring as few cleaggossible such that com-
mitments to other parties are little affected. After extiegdhe Action Resource Formal-
ism (ARF, see de Weerdt et al. (2003a)) with gaps and incdd@ap in a plan can result
from an incident), refinement planning approaches are gadvand developed. This ap-
proach makes use of a library with plans. At the moment a @adered infeasible, there
is a plan with a gap. The plan library is searched for elemiratiscan be used to fill up
the gap.

Another example of reactive methods can be found in the fieldlmt path planning.
Stentz [(1994); Koenig and Likhachev (2002) worked on rolahglanning in partially
unknown environments. Thefelong Planning A*andD* variants are similar to the well-
known best-first search A* algorithm, but try to improve oisthy avoiding having to start
from scratch when a small disturbance occurs. For examgide\a robot approaches
towards its goal location it obtains new information fronmsi@g its local environment.
This data might change the travel costs (e.g., suddenlytéctea wall). In that case,
a basic shortest-path algorithm would have to restart fromtsh. The D* or LPA*
algorithms are able to locally propagate this change ins¢asting stored data from the
previous computation, and are potentially faster in commguthe new optimal shortest
path.

This section described the importance of taking reliabilito account, the classical
approaches to pickup and delivery problems do not sufficedatice. There is a trade-off
in costs between having a reliable operation with sub-ogtiperformance (when there
are no failures) and an unreliable operation that is chestpybere performance degrades
in case of incidents. At the very least, system designers tale aware that there often
are components in the system that can be malfunctioningeataiic point in time. Several
aforementioned techniques for taking incidents into antate available for this purpose.

2.4 Summary

This chapter presented an overview on classical pickup alidedy transportation prob-
lems and described several of the many different solutiohrtigjues. While evaluating
these techniques, it becomes apparent that there are tvavtamp problems that are not
covered.

First, the classical approaches often abstract from rdarenpg by using a distance
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matrix, which specifies the distance between all pairs adtioas. The context-aware ap-
proach models the transport network in greater detail, s@hbottlenecks in the trans-
port network can be identified (many reservations for theeseesource) and congestion
can be minimized. But the existing context-aware approaehe computationally expen-
sive and, hence, cannot be applied to large systems. Wemplidve on this aspect of
context-aware routing as well as its flexibility.

Second, it is usually assumed the components of a systertidnriawlessly. Sec-
tion[2.3 elaborates on the importance of taking into acceeliebility and robustness. In
this thesis, incidents play an important role.

The next chapter describes a framework for pickup and dglivansportation, which
also includes non unit-capacity resources and, hence, a gesreral definition of a con-
flict.
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3
Chapter

A framework for multi-agent transport
planning

*...DRIVE AROLIND THROUGH SPACE
WITH LIMITED CAPACITY...

\

WELL... AT LEAST THERE ARE
NO CONFLICTS...

This chapter proposes a new framework for pickup and deliransportation that can be
applied when mobile entities carry out transportation esggt Transportation plans have
to be constructed to ensure that these requests are cpmiadtlefficiently executed and
their deadlines are met.

Usually, there is a common transportation network wheredh@ans are executed.
Due to limited capacities of this network, these individtrahsportation plans might in-
terfere with each other. An example application of the frari presented in this chap-
ter is modern material handling systems, which make morenzor@ use of autonomous
guided vehicles in manufacturing plants, warehousegjhligton centers, and terminals.

The framework distinguishes transportation agents amrdstriicture agents. Trans-
portation agents make transportation plans, while infuastire agents make reservation
plans for infrastructure resources (lanes, crossingsndking their transportation plans,
transportation agents query infrastructure agents abeuavailability of parts of the in-
frastructure they need. This extends the approach of Kimlandhoco!(1991) by allow-

51
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ing infrastructure agents to use other reservation palithan a simple first-come-first-
serve policy and, e.g., to take into account priorities adrag. Moreover, this approach
can also be used to deal with incidents by informing transpion agents about delays
and unavailability of parts of the infrastructure, enaglihem to replan their routes.

This chapter is organized as follows. At the beginning theleh@s described, which
consists of the transport network, infrastructure andsjpant resources (the mobile en-
tities), requests, plans, and incidents. Then, the inutgiaf this model are described,
followed by the requirements that define when a transporiatian is feasible. After that,
a set of mobile entities is considered and the exact mearfi@mganflict in our framework
is introduced. Subsequently, a section is devoted to agédie responsibilities of the
infrastructure agents and transport agents are describedlly, performance indicators
are presented that can be used to measure the performaiheenobbile entities (i.e., the
quality of the transportation plans) and the system as aeavhol

3.1 Ingredients

In this section the main ingredients of the transportatiadeh are described. First, the
transport networks modeled usingnfrastructure resourcethat have several properties
(e.g., capacity, distance, maximum speed). Another typesurces argansport re-
sources Transport resources, which have a maximum driving speddoaaling capacity,
are the mobile entities moving around though the transpaivwork. Together the infras-
tructure resources and transport resources form the sesofirces in the model.

Second, there are the transportatiequestgalso referred to ataskg that represent
a customer request for transporting a freight (or perhapasagnger) from a source to
a destination location. The customer specifies a time-win@@., an interval in time)
for both the pick-up and the delivery event. Furthermoregveard function is given for
each transportation request, that defines the reward foetip®nsible agent. If the agent
succeeds in executing the pick-up and delivery event insidespecified time-windows,
the reward for this agent is typically maximized. Violatiohone of these time-windows
decreases the reward as specified by the reward function.

Third, an important aspect of our model aneidents There can be many different
types of incidents, among others, customers that changetract transportation requests,
unexpected traffic jams (predictable traffic jams are nosm®red to be incidents, be-
cause they can be taken into account during planning), lebhreak-down, communica-
tion failure, etc. In the model it is specified what types dafidents are considered in this
thesis.

The following section describes the transport network &edrifrastructure and trans-
port resources.
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A B
E
C D
(8) Graph representation using nodes (b) Aresource for each node and edBe=
and edges. G = (V,E) where V = {A, B,C, D, E, AB, AC, BD, CD, AE, BE,

(AB,C,D,E} and E = {{AB}, {AC}, CE DE}andE = {{A AB}, {A AC}, {A,

(B,D}, {C,D}, {AE}, {B,E}, {C,E},  AE} {B,BD},{B, BE}, {C,CD}, {C,CE},

(D,E}}. (D, DE}, {E, AE}, {E, BE}, {E, CE}, {E,
DE}}.

Figure 3.1: Graph representation versus resource-bapegsentation of a transport net-
work.

3.1.1 Transport network and resources

Following/Hatzack and Nebel (2001) we make use of a non-classource-based graph
representation of the transport network by using infrastme resources. This simpli-
fies, for example, the modeling of intersections. Infradinte resources represent roads,
road segments, part of an intersection, parking spacelfare[3.1h illustrates a classi-
cal graph representation using a grdphk- (V,E) of nodesV and edge&. Figure[3.1b
shows the resource-based representaBigr- (R™, Er) with locationsR" and connec-
tionsEr. Each nodere V and each edgee E correspond to a resourcgandre in the
resource-based representation. Furthermore, for eacheeddvy, 2} € E the resource-
based network has connectioftg,,re}, {re,l'v,} € Er. In the resource-based representa-
tion a vehicle always resides in the infrastructure resourcepresenting space — that it
occupies. These resources have several properties lika thiatance, maximum allowed
traversal speed, maximum load, etc, while the edges justedtfe adjacency relation and
have no properties of its own.

Thetransport networkor infrastructure, represents how the mobile entities (tans-
port resources) can move around. Transport netwesk R, Eg, k™, k", d'"f snf &7 is a
tuple consisting of a set of resourdesa directed connectivity relatider (defining which
resources are neighbors), capacity functidhandk™, distance function, and maxi-
mum speed functions” ands".

The setR = R" U R" of resources is decomposed into the seindfastructurere-
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sourceR™ and the set ofransportresources!". The infrastructure resources represent
space that can be occupied by the transport resources. gptenesource € R" repre-
sents a mobile entity, e.g., a vehicle that can move aroundigi the transport network.
The directedtonnectivityrelationEg = R" x R defines which infrastructure resources a
transport resource can traverse to from a given infrastracesource. Théistancefunc-
tiond" : R — R+ gives, for each infrastructure resource R, the positive non-zero
distanced™(r) > 0 it takes to traverse infrastructure resource

For all infrastructure resources R, the capacityfunctionk™ : R"f — N specifies
the numbek!"(r) of transport resources that can use resousienultaneously. In other
words, for each infrastructure resourceR™, at any point in time&"(r) is the maximum
number of transport resources in resourcEor transport resources, there isapacity
functionk" : R" — N, wherek!"(r) is the load capacity of resources R" in terms of
freight (see the next section).

The Speedfunction s"" : R"f — R specifies thas™(r) is the maximum possible
driving speed at infrastructure resource R" irrelevant to which transport resource is
traversing infrastructure resourceFor a transport resouraes R", thespeedfunctim@
§": R — R specifies the maximum driving spegt{v).

In the following section the transportation requests, WHarm the workload for the
system, is described.

3.1.2 Transportation requests

Transportatiomequestgalso refered to as orders t@askg represent the workload for the
system. The set of transportation requests is denotdd. bgach ordenj € O is a six-
tupleo; = (fj,sj, Tj-s,dj , Tjd, 1) denoting the request to pick up freigf]te F (or perhaps a
passenger) with volumeol(fj) e N at a certain source locatiane R within a specified
time-windowt} = [t7;,t7,] and to deliver it at a specified destination locatire RN
within a time-windowr{ = [t{;,t7,].

The lowerbound and upperbound of a time-windovas well as other time points in
our model, are modeled as real valueRimrxtended with positive and negative infinity.
The sefT =R u {—o0,00} contains all possible time points. Positive infinity is adde
be able to specify, for instance, that a pickup or deliveguest has no deadline. The set
W =T x T represents all possible time-windaWs

The time required to load and unload freight F is denoted) (f;) e T anddy(fj) e
T, respectively. Assuming that transport resoweeR" has loaded a subs€&, < O,

of the requests assigned to it, the capacity constraint cresport resource can now be

LIn our model the speed and capacity of an infrastructureuresodo not depend on the number of
transport resources present.
2A time-windowT = [t1,t2] € W, t1,t2 € T, for whicht; > ty, is said to be an invalid time-window.
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specified a8, o, fj < k" (v) — the sum of all currently loaded freight is smaller than the
capacity of the transport resource — always holds.
Time valued? 1,t-32,tf'1,tf'2 e T are continuous, and the time-windows must be mean-

7]
ingful, i.e., it is possible to load within the loading timéndow, t7, > t7; + §(f)), itis

possible to unload within the unloading time-windmﬁ\é > tﬂl + &(fj), and (neglecting
driving time for the moment) it must be possible to unloaéiatthe minimal loading time,
tﬁz >0, +a(fj) + du(fj). An infinite time value indicates it does not matter how early
(—o0) or how late §-o0) the good is picked up or delivered.

Associated with each request there is a reward functiom; : W xW — R. If the
actual pick-up and delivery time-windows arpand ff' respectively,g (T}, ff') iS max-
imized if the request is executed within its time-windows, it} is during 7} and Tjd
is during 79, and will typically be smaller if one or both of the time-winds of the
transportation request are vioIe@edBoth loading or unloading too early and loading
or unloading too late typically decreases the reward thatageeives for executing the
transportation request.

Finally, there is a load functioh, : O, — T and an unload functiob), : Oy, —» T
that, for each transportation request Oy in the set of transportation requests planned
for execution by transport resourves R", specifies the time at which the pickup and
delivery takes placd.,(0) andU,(0) respectively. For all transportation requests to be
executed, it must hold that, for alk Oy, Uy(0) > Ly(0) > to, wheretg is the starting time.

There are more restrictions to what a correct plan can Idak hvhich will be de-
scribed later in Sectidn 3.2. The next section describesgikecomponent of our model,
which is the transportation plan of a transport resource.

3.1.3 Agents and plans

The framework distinguishes transport agents and infresire agents. This section in-
troduces both of these agents and their plans as ingredieaots framework. After the
requirements with respect to conflicts are defined, SeCii@me¥isits infrastructure and
transport agents and describes how the traversal time aedvegions are computed ex-
actly.

3.1.3.1 Transport agents

Each transport resource is controlled by one transporttagéis transport agent creates a
plan for the transport resource, which successfully exescall the assigned transportation
requests as efficiently as possible.

3Allen’s interval algebra (Allen, 1983) defines that a tinéervalt’ is during time-intervat if and only
if time-window 1/ does not start before time-windomand does not end at a later time.
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Atransport resourcee R' has a transportation plan that specifies the intended action
of the transport resource. Such a plan consists of the rbatedansport resource planned
to traverse as well as the schedule information, which §ipsat what time each of the
locations (infrastructure resources) will be occupiedh®ytransport resource.

The routeRt, = (ry1,rv2, - - -, v, ) for transport resources R' through infrastructure
| is represented as a sequencéNpinfrastructure resources such that resourgesnd
rvi+1 are connected to each other, i@y, rvi+1) € Er for 1 <i < Ny. Accompanying this
routeRY,, the schedul&d, of transport resouroces R provides information on when each
of these resources i, are claimed. A schedul8d, = (ty1,ty2,...,tyn,) iS @ sSequence
of time points, where,; specifies the time transport resource R claims resource
ryj. This implies that transport resoure@sesry; during the time-windowty, tyj1) for
1 <i < Ny and uses resouraegy, during time-window{ty,, o). Obviously, at any time,
the route and schedule have the same lengthyve R" : |Rt,| = |Sd/| = Ny.

3.1.3.2 Infrastructure agents

The infrastructure agents are the road managers in a trafigonk. They ensure the
safety of (a part of) the network and their goal is to optimiezethroughput of the network.
The infrastructure agents determine which reservatioasard which are not, allowed
for the transport agents. Different policies can be usedritaripze multiple transport
resources, which want to enter the same infrastructurairesat the same time (these
will later be described in Sectian 4.2.4).

The infrastructure agent maintains a set of reservationdentgy for the transport
resources. Each time a transport agents wants to reservatisportation plan it com-
puted or re-computed, this set of reservation is changettQ8¢ < R x W is the set
of transport resource and time-window pairs stored at stfteture resourcee R™. If
(v, [ts,t2)) € Q(r), this means that vehiclee R" has reserved access to infrastructure
resourca € R" during the time-window starting at tintgeand ending at timé.

To be able to specify later what exactly is a conflict betwesservations of transport
resources, we also introduce the followiclgim function. Using the plan representation
described above, the claim function specifies in which stftecture resource the transport
resourcev e R' has a reservation at timend is defined as:

claimvit)=r < 3ryeRy:r=ryi Ate[tyi,tyit1). (3.1)

Often transportation plans are not executed accordingetdrémsportation plans that
were initially computed. Because models are never pertbetactions of the agents
might not have the exact effect as described in the modelulcase, we want to test the
robustness of the transport planning methods if such atsituaccurs. That is why we
modeled incidents, which is the topic of the next section.
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3.1.4 Incidents

Incidents are events that disrupt regular plan executioihgamerally require replanning.
There are several types of incidents, which are best cazegbby the entity that they
influence. These ar@) the agents(ii) the transportation requestsj) the transport re-
sources(iv) and the infrastructure resources. To the first categorynigegtommunication
failure problems. In AGV systems, often wireless commutiicais used between the
AGVs, which can very well be subject to communication faluin the second category,
changes to transportation requests (e.g., a customer lagi)gbut also the arrival of new
transportation requests can be modeled as incidents. ftbetlao categories are related
to (partial) resource failure, of both infrastructure n@s@s as well as transport resources.
Since, in the experiments presented in this thesis, onlthihgéand fourth category of in-
cidents play a role, the focus of this section is also on thgses of incidents.

Communication failure If a communication failure incident occurs, the affectedrag

is not able to communicate with any other agents during tleeipd time interval. That
means the agent might have to fall back to simpler plannindpats for which it does not
need to communicate with others. A communication failu@dant(a, 7) in the set of
incidentsZ specifies that agemte A is not able to communicate with other agents during
time-windowt e W.

Resource failure (speed) Resource failure indicates that a certain resource — egimer
infrastructure resource or a transport resource — doesinotibn properly during a given
interval in time. A resource failure incideft,r,i, 7) in the set of incidentg is a tuple
consisting of the timé, at which the incident is announced to the agents, the resourc
r € R the incident operates on, an impact valug 0 < 1 indicating the severity of the
incident, and a time-window e W during which the incident is effective. The duration of

T is often denoted theepair time of the resource. If the incident operates on a transport
resource, i.er, € R, the vehicle’s maximum speed is multiplied with—i) during time-
window 1. If the incident operates on an infrastructure resoureeR", the maximum
allowed speed of the resource is temporary multiplied \th i).

Resource failure (capacity) If the resource is a cargo unit (place where the freight is
loaded), the maximum loading capacity is multiplied with- i) (where again the impact
valuei is between 0 and 1); this only affects new loading operatiohcurrently loaded
transportation requests.

Now the components have been described it is possible tegsept the transportation
plans for all of the transport resources. Not all possitaegportation plans for a transport
resource are allowed and, therefore, the next sectiorthistswariants and requirements
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on plans and sets of plans of the transport resources.

3.2 Invariants and requirements

This section describes the invariants to restrict to thdlera setting and the validity re-
quirements, first for a single transportation plan and tleethe plans of a set of transport
resources.

On the one hand, the invariants simplify the specificatiothefplanning methods in
Chaptef 4. On the other hand, they restrict the transporntgioblem considered (such
as the assumption stating that transshipment is not caesige

The requirements are needed to specify what is a feasibiepoatation plan. The
transportation resource must, of course, be able to exéoeif@dan and, by executing the
plan, it must successfully complete the transportatiomests. Furthermore, there are
additional requirements for a set of transportation plansrnisure that it is also possible
and safe to execute the set of plans together. The next seggrribes the invariants of
the framework.

3.2.1 Framework invariants

Transport resources must claim exactly one infrastrugeseurce at all times (no ghost
resources). Furthermore, each transport resource is gigéart and destination location
with sufficient capacity. This assumption prevents agemtsetin a location where they
bother other agents, but have no goal for themselves to késdocation (and, hence,
this assumption simplifies the planning methods).

1. During the lifetime of each transport resource, exactly mfrastructure resource
must always be claimed.

2. Each transport resource is initially located in an irtfacture resourcee R™ with
sufficient capacity, i.ek™(r) > |A|. Such an infrastructure resouncs referred to
as a parking space.

3. Each transport resource also ends in an infrastructsmureer € R™ with suffi-
cient capacity, i.ek"(r) > |A|.

4. Transshipmenis not possible. A task assigned to an agent can still be igraess
to another agent up to the moment the freight is loaded. Winefréight has been
loaded this agent is responsible for a correct executioheparticular task.

5. The storing of the reservations belonging to the trartafion plan of a transport
resource is assumed to be ammicoperation (i.e., no problem will arise that an
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agent is searching a plan while reservations are being reddiy another agent
resulting in invalid transportation plans).

The next section describes the requirements for a trarsmortplan to be feasible and
the requirements for a set of transportation plans to béysatecutable together.

3.2.2 Framework requirements

In this section first the requirements of a transportatiangbr a single transport re-

source are described. A transportation plan is cdbedibleif it meets the requirements

described here. Subsequently, a set of transportatios fdamultiple transport resources
is considered. Not all combinations of feasible transgimmeplans can safely be executed
together. The notion of a conflict is described and the reguénts are listed for a set of
transportation plans to be free of conflicts.

3.2.2.1 Requirements of a transportation plan

A feasibletransportation plan can be executed by the transport res@und it will suc-
cessfully complete all transportation requests that haentassigned to the transport
resource.

Among others this means that all adjacent resources in thte af the transport re-
source must be neighbors in the transport network and abp@rtation requests assigned
to the transport resource must be planned for correct execuDefinition[3.1 specifies
when a plan is feasible.

Definition 3.1 A feasibleplan R, = (v,Rt, Sd,, L,,Uy) for a transport resourcec R"
is a plan that correctly takes into account all of the infatiorg e.g., incidents, that is
known at the time the plan was computed. A feasible [fanonsists of a rout®t, =
(ryt,...,fyn,), aschedul&d, = (ty1,...,tyN,), loadLy : Oy — T, and unloadly : Oy, — T
information for transport resourses R, for which the following must hold:

= [Sd| =Ny,

e The first resource is claimed at the current timiee.,claim(v,t) =ri At € [ty,t2),

e The route and schedule have the same lengtj

e The last resource is claimed as long as the transport resaxists, typically
tN+1 = 0,

¢ All infrastructure resources adjacent in rotg must be neighbors in the transport
network:Vi e [1,Ny) : (ryj,rvi+1) € Er,

¢ All loading actions must be performed in the infrastructiggource that was spec-
ified by the customeryo; € Oy,3j € [1,Ny) : Ly(0j) € [tyj,tyj+1) ATyj = S, and
likewise for unloading¥o; € Oy,3j € [1,Ny) : Uy(0i) € [tyj,tyj+1) A Tyj = di, and
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Vi Vi
V2 V2
‘ Time ‘ Time

(8) Time-windows for both (b) Instantaneous exchange of re-
claims on resource AB over- source AB and B between the
lap. transport resources.

Figure 3.2: Examples of the two types of conflicts. Therelameet resources with capacity
1,i.e.,R"™ = {A B,AB} andvr e R™ : ki"(r) = 1. Both conflicts would disappear if the
capacities were 2.

e Unloading takes place after loading a requ&st:e Oy : Uy(0j) > Ly(0)).

Instead of considering only a single transportation plathe following section the trans-
portation plans of all transport resources together arentakto account.

3.2.2.2 Requirements of a set of plans

In order to consider when a set of transportation plans ciatydae executed at the same
time, the notion of a conflict will be considered. If a confloetween two or more trans-
portation plans is present, this means the transportatlamsgannot be executed together.
We assume that the individual transportation plans aradyréeasible as discussed in the
previous section and now consider the notion of conflicts.

Hatzack and Nebel (2001) suggest how to model conflicts iwlee plans for dif-
ferent transport resources. In their paper, each infretsire resource has a minimum
traversal time per vehicle. Unlike our model, all their adtructure resources have capac-
ity 1. Using our notation, assuming all infrastructure gses have capacity 1, transport
resourcese R has routeRt, = (ry1,rv2,...,fun,), sSchedulesd, = (ty1,ty2, . .. ,tyn,) and
likewise for transport resourcge R, Hatzack and Nebel model conflicts as the follow-
ing constraints:

(rw — rw,,-)=>((v:w)v[tv,i,tv,iﬂ)m[tw,,-,tw,-ﬂ)=@), (3.2)

(rv,i =Twj+1Alyi+1 = rw,j) = (tv,i+1 # tw,j+1>- (3.3)

Equatiori3.2 states that if two different transport resesve R andwe R claim the
same resource, their time-windows may not overlap. EqonE&i8 prevents two transport
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resources to change position with each other instantly. ethations correspond to the
type of conflicts illustrated in Figufe 3.2.

In this thesis a similar notion of conflicts is used. Howetbe above definition is
adapted to take capacities of the infrastructure resountesccount. In Equationis 3.4
and[3.5 conflicts for resources with non-unit capacity afindd, corresponding to the
above equations. Equatidns]3.2 3.8 of Hatzack and N2@@l) can be generalized
to cope with varying capacities using Equation 3.1. Thisdeelby setting a constraint
on the maximum number of vehicles that can swap simultahgous

First, two auxiliary functions are defined to simplify sg@goig the constraints. Func-
tion exchanges,r’,t) defines the number of transport resources that exchangetnfc-
ture resource € R™ for r’ e R™ exactly at timet e T. Functionstay(r,t) is the number
of vehicles that do not change their current infrastructesourcer ¢ R" for another
infrastructure resource at time T.

V(r,r') e Er,Vte T: exchange@,r',t) = “?8 [{veR":
&
(claim(v,;t —€) =r Aclaim(v,t + &) =r’)
v(claim(v,t + &) =r aclaim(v,t —g) =r')}
VreRM vteT: stayrt) = Ii?a|{ve R":
&

b

claim(v,;t —g) =r aclaim(v,t + &) =r}|.

The number of exchangexchanges, r’,t') between infrastructure resouraes R
andr’ e R™ at timet is defined by counting the number of transport resouveeR" that,
at timet, just left resource just and entered resource or exactly the other way around.
This holds for any small numberapproaching zero.

We can now specify the two requirements, one defined at tloeires level, the other
at the edge level, that ensure that the joint set of tranapont plans is possible and safe
to be executed by the transportation agents.

On the resource level, at all times the capacity of the resomust be satisfied:

vreR"M vteT:|{ve R : claim(v,t) = r}| < k"(r). (3.4)

On the edge level, the following safety constraint is defined

V(r,r') e Er,Vte T : exchange@,r’,t) <
min(k"(r) — stay(r,t), k"(r’) — stay(r’, t)).

Equatior 3.4 prevents the situation in Figlre B.2a, whereerataims are done than
allowed by the capacitk™(r) of infrastructure resourcee R™. Equatior(3.5 avoids
a situation like in Figuré_3.2b. This equation ensures tlienmeo spontaneous mutual
exchange between infrastructure resoureeR" andr’ € R" by more than mitk"(r) —

(3.5)
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"
V5 Ve Kmf(r) =2
klnf(rl) -2
kinf(r//) -2
Vi "
V2 V4
r

(a) Not allowed: 2= exchanges,r’,t) £
min(2—0,2— 1) =1. Similar for(r,r").

r’ kinf(r) -2
Vo Ve Kinf(r/) -2
klnf(r//) -2
Vi
\%) A/
r r/

(c) Is allowed, also in case both vehicles
andvsz would head to the right.

r” :
v Vg Kmf(r) =2
5 klnf(rl) )
kinf(r//) -2
Vi "
V2 V4
r

(b) Is allowed: exchanges,r’,t) = 2 and
stay(r,t) = stayr’,t) = 0.

(r,r”).

kinf(r)
kinf(r/)

Il
w N

Similar for

Vi

r

V2

V3

(d) Not allowed: 3= exchanges,r’,t) £
min(2—0,3—0) = 2.

Figure 3.3: These examples illustrate which simultaneowhanges are allowed by
Equation3.6. All arrows in these figures indicate the desfrthe vehicle to move to
the resource the arrow points to. All these movements atantemeous, assume they are

all atexactly the same time.
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rll

Figure 3.4: Border capacitidsordercap: Er — N, a possible extension to the model,
KInf(r) = Kf(r’) = KN(r”) = 2, bordercag(r,r')) = 1, bordercag(r,r")) = 1.

stay(r,t), k" (r’) — stay(r’,t)) transport resources.

If one of the Equations 3.4 &r 3.5 is violated, we say there ¢sralict for a set of
transport resourceR’ < R" in resourca e R™ (that has capaciti™ (r) < |RY|) during
time-windowT (7 is the intersection of the overlapping claims of all transpesources
in RY for resource).

Remark 3.2 (Strenghtening the constraints)For some application domains, it could be
desirable to strengthen (or weaken) the edge level const@onstrainf 3)5). Strength-
ening the constraints is often required in cases where #mesport resources are large
relative to the infrastructure resources (e.g., airplaxértg) and in cases where the in-
frastructure resources have many connections.

Equatior_3.b prevents more vehicles to swap resourcestsinegusly than the min-
imum of the capacities of these resources. If a resource hi¢tfpla outgoing arcs, see
Figure[3.4, this might be too general — depending on the egipdin domain. In such
a case, the edges= Er, whom in this model have no properties at all, can be given a
border capacitpordercafe) € N representing the area size of the border between the in-
frastructure resources. Functibordercage) then specifies the number of vehicles that
are allowed to swap simultaneously. The edge level comsnaplacing Equation 3.5,
would then be:

V(r,r’) e Er,Vt € T : exchange@,r’,t) < bordercag(r,r’)). (3.6)

Finally, we can state that Equatidns]3.4 3.5 form theireoents for a joint set of
transportation plans, and there is one more requiremehetplan of a transport resource,
which takes into account the plans of other transport ressur

¢ Given that reservations of other transport resourbgs:(B) and incidentslfs € IB)
are or are not taken into account, not a single infrastrectesource is traversed
faster than possiblefi € [1, Ny — 1] : tyj+1 = tyi + (v, Iy, tvi, b, br).
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Figure 3.5: Example plans for five transport resources fromdifferent perspectives.

The next section describes how the infrastructure agemtgransport agents work to-
gether. The infrastructure agents compute reservatiomsffastructure resource as asked
by the transport agents. Furthermore, they actively moradtal inform the transport
agents in case of abnormalities. If the transport agentgefeasible plans that conform
to the reservations computed by the infrastructure agéimésjoint set of all transport
resource plans is guaranteed to be possible and safe tatexecu

3.3 Agents

Operational transport agents make agreements with infiiste agents. For each infras-
tructure resource, a transport agent can claim the timeavirfor its transport resource
when he wants to use the resource as determined in the selwddiné transport resource.
This can, depending on the algorithms that are used, grardgbnt certain rights, e.g.,
that no other transport resource is allowed to claim thestfucture resource during this
time-window. Or, they can be used by other agents to avoidilydaaded infrastructure
resources. In our model several functions are defined treatifgpthe time required by
transport resources to traverse resources — with or witlagirtg into account previously
committed plans — and the load of infrastructure resourgestame.

3.3.1 Infrastructure agents

Access by transport resources to the infrastructure ressus controlled by one or more
infrastructure agents, depending on the size of the infrestre. Each infrastructure re-
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source is controlled by one infrastructure agent. The stfteture agent computes a
reservation for a transport agent, given the time the tranispsource enters the resource.
Moreover, it is allowed to change these reservations at Willis is necessary, for ex-
ample, in case an incident slows a transport resource dowundh a way that another
transport resource must also be delayed. The agent is iatbthat its prior reservation
has to be delayed by the infrastructure agent. It is assunaethtese infrastructure agents
can be trusted by all other agents.

The tasks of an infrastructure agent @)eto ensure a conflict-free situation aig
to maximize the performance of an infrastructure resouteright be that infrastructure
agents try to maximize the throughput of an infrastructesmurce or they communicate
with transport agents to determine which transport agemigcafirst. Intuitively, infras-
tructure agents can be compared to intelligent traffic ight Chaptef 4 several methods
are described that can be used by infrastructure agents.

The following section describes how the traversal speedi@resport resource for an
infrastructure resource is determined.

3.3.1.1 Traversal speed

The speed at which transport resources traverse the infcaste resources is determined
by (i) their maximum speedji) the maximum speed allowed at the infrastructure re-
source they are traversing, afid) incidents that affect either the transport resource or
the infrastructure resource. Of course, their speed is it¢ransport resources are not
traversing infrastructure resources. For each transpedurcese R' and infrastructure
resourca € R" we define the static speag(v,r) at which transport resouraetraverses
infrastructure resource and the situation-aware spesglv,r,t) that takes into account
incidents effective and known at timie Note that it is possible that not all incidents at
timet are known already at the time this function is computed. @Eifr,t), which is the
effective impact of incidents at tintefor resourcea (only taking into account incidents
that are known at the time of computation), the static anchdyin speed are computed as
follows:

s(v,r) = min{s"(v),s"(r)}, (3.7)
Ei(r,t) = max{i: (t,ri,1)eZ Anter}, (3.8)
sa(vrt) = min{s'(v)-Ei(vt),s"(r)-E(r,t)}. (3.9)

The above speed functions do not include waiting time cabgeather transport re-
sources that claim the same infrastructure resource origy tlansport resources driving
in front of this transport resource in the case that ovenigls not allowed. This waiting
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time is taken into account in the plans of transport res@urce

Knowing the traversal speed it is possible for the infragtite agents to compute
a reservation for a transport resource and an infrastreicesource, given the time the
transport resource will enter the infrastructure resaurce

3.3.1.2 Computing reservations

Infrastructure agents that take into account both resen&bf other transport resources
as well as incidents search for the earliest time-windowemcan infrastructure resource
that results in a conflict-free situation. In other words thesired time-windovjts, to)

in which transport resourcee R traverses infrastructure resource R™ at or later
than timet is the solution to the following optimization problem (ndket the last two
equations are equal to Equation]3.4 3.5):

minimize ti
subjectto t; >t
thy=t1 +s4(v,r,t1)
Vt e [ty,to) : |[{we R" : claim(w,t) = r}| < k"(r)
V(r,r’) € Er,Vt’ € {t1,t2} : exchange@,r’,t') <
< min (K" (r) — stay(r,t"), k"(r") — stay(r’,t'))

(3.10)

If the infrastructure agent does not take into account imis, we can replace
sq(v,r,t1) by ss(v,r). If reservations are not taken into account, the optimirapirob-
lem becomes trivialt; =t andty =t + sq(v,r,t). That greater values fdg >t do not
need to be considered is is proven by Propositioh 3.3. Fumibke, this proposition sup-
ports the fact that we can minimitgand do not have to worry abatgtin the optimization
objective.

We can now define functiod that computes the time required to traverse the infras-
tructure resource, given two Boolean parameters indigatimether or not to take into ac-
count reservations of other transport resources and/@ents. Functiod(v,r,t, bg, br)
represents the minimum time needed to traverse infrasiicesource € R™ by trans-
port resources € R' starting not before timee T while taking into account reservations
of other transport resources if and onlyoi € B is true and taking into account incidents
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if and only if bz € B is true.

o(v,r,t,bg,br) = to—tin

minimize tq
subject to tp >t
— Sd(V, r7t1) |f bI
t2_t1+{ss(v,r) o
Vt e [ty,t2) : [{we R" : claim(w,t) = r}| < ki"(r) f bo
V(r,1') € Er, V' € {ta,tp} : exchanges, r',t’) < if bg

< min (K"(r) — stay(r,t"), k"(r") — stay(r’,t'))
(3.11)
Propositiori: 3.8 shows that, while computing the reseradtint,) for an infrastruc-
turer € RM it is sufficient to minimize the value df, because that always leads to the
minimum value fort, as well. Departing later (increasing) always results in at least
the same completion time. Furthermore, the proposition generalizes this result ove
(partial) routes of more than one infrastructure resource.

Proposition 3.3 Given any infrastructure k (R, Eg, k™ k" d""f §"f df), a set of inci-

dentsZ, and a fixed route Rt= (ry1,ry2,....fun,), lett,t’ e T to be two different depar-
ture times for transport resourcesVR" such thatt > t. LetA(RY,t) denote the minimal
time needed to traverse Ritarting at time t. Then, at any point in tiH]e't holds that

the completion time’ t A(R%,,t'), when starting the traversal at timé s at least the

completion time when starting at time t:

t' + A(RE,t') >t + AR, 1).

PROOF. Firstitis proven the proposition holds for a single infrasture resource. Then,
it is shown how this result can be generalized over a compbet.

For any infrastructure resouraee R™, and Yv e R",Vbg,br € B, it holds that
t'+ o(v,r,t’,bg,br) =t + d(v,r,t,bg,br). If the transport resource would leave at the
early point in timet, it could in the worst case be blocked by an incident with iotpa
one, meaning the transport resource would have speed zeng tloe incident. However,
leaving at the later point in timg — while traversing the same route — the transport re-
source will then arrive in the same situation. If incidentgvimpact one would not have
been allowed, the inequality can even be replaced by the strict inequivalence relation
>,

4Although the set of incidents is fixed, it is still the case that at different points in timiferent
incidents are known, because an incident is only known &feelease time. A plan that was feasible at
timet, is not necessarily still feasible at timhe- € for somee > 0.
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Thus for a fixed route that has length one the propositionshdlw notice that

t'+ARL,Y) = t'+3(vrya,t’, b, br) +A((rvz, ..., run,) '+ 3(Vrya,t', b, br))
= t+6(v,r\41,t,bQ,bI)+A((r\42,...,r\LNV),t’+6(v,r\41,t’,bQ,bI)).

That means it also holds for all fixed routes of length two tH&ninduction it can easily
be shown that it holds for all fixed routes of arbitrary length n

This section described how the infrastructure agents coenservations for transport
resources that are not in conflict with any existing resémat The next section describes
the transport agents that can plan on a higher level, relymiipe infrastructure agents to
solve the lower level conflicts.

3.3.2 Transport agents

Transport agents are the planners for the transport reseuiteir goal is to maximize
performance (to be defined later in this section) by exegutansportation requests. The
setO, < Ois the set of transportation requestithat are assigned to transport resource
ve R, Intuitively, they try to maximize the active performanaealicator, for example,
maximize the reward of individual transportation requegtde minimizing the (traver-
sal) costs. Each transport agent owns a transport resaurpessibly a set of transport
resources. The task of transport agents is to compute pharthd transport resources
they own.

At each point € T in time, each transport resouree R claims exactly that infras-
tructure resourcelaim(v,t) e R", where transport resoureses R' resides in at time.

If r; andr; are infrastructure resources afd,r;) € Er and transport resourcee R
holds a claim at infrastructure resourgeit can claim resource, after having traversed
resource 1, while releasing its claim on resource

The behavior of a transport agent is mainly defined by how amdiwtasks it wishes
to execute together with the planning method it uses to coegxecutable transportation
plans.

The goal for each self-interested transport agent is to miaei its performance, e.g.,
to maximize the sum of reward values for the transportatemuests it executes, and/or
to minimize its costs for traversing infrastructure resasr;, waiting, etc. Although not
necessary, for simplicity it is assumed that each agensoresible for a single transport
resource.

Equatior 3.111 is used by the infrastructure agents to coerpetreservations for the
transport agents. The importance of this equation is, #s#iming the transport agents
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only create feasible plans (see Definitlonl 3.1) it can be gmabhey also only construct
plans that meet the requirements for a set of transportptaons to be free of conflicts.

Proposition 3.4 If the transport agents create feasible plans and the irtiftec$ure agents
compute the reservation time-windows for all infrastruettesources with limited capac-
ities, then the joint set of all transportation plans for &fhnsportation resources is free
of conflicts.

PROOF. We must prove that, if a transport agents created a fegsidhefor its transport
resources e R and an infrastructure agent determined the time-windovisefeserva-
tions, Equations 34 arid 3.5 are met. Note that the trarepmrtagent can choose the
reservations for thparking spaceesources (the infrastructure resources with unlimited
capacity) freely. Here no conflicts can occur and the velualeeither stay idle here or
load/unload freight.

Let routeRt, = (ry1,ry2,...,ryn,) and schedul&d, = (ty1,ty2,...,tyn,) be the fea-
sible transportation plan for transport resoweeR". We will prove the proposition for
an arbitrary index € (1,Ny) in the plan (indexes 0 and, do not need to be considered,
because these are parking space resources). At ingghiclev resides irry; during the
time-window(ty;, tyj+1).

From Equatiori3.11 it follows thatt € [tyj,tyi+1) : [we R' : claim(w,t) = ry;| <
K"f(ry;i). This means that Equation 8.4 is satisfied.

Equation [3.Il also states that the infrastructure take® iatcount that
V' e {tyi,tyir1} : exchange@yi,ryit1, <)min(k™(ryi) — stay(ry,t’), k" (ryiz1) —
stay(ryi+1,t)). And also thawt’ e {tyj_1,ty;} : exchange@y;_1, rvj, <) min(k™(ryj_1) —
stay(ryi_1,t'),k"™(ry;) — stay(ry;,t')). From these two observations it can be concluded
that Equation 35 is also satisfied. -

Proposition 3.4 does not mean that the planning of the tatesjion agents becomes triv-
ial. First, itis their responsibility that the plans thegate are feasible (by Definition 8.1).
Second, it is also their responsibility to ask the infrastinee agents to create the reser-
vations they need to construct feasible and efficient pl&igppose that, at some time
t, an infrastructure agents computes a reservdtigtp) for the transportation agent. It
is possible this reservation cannot be used by the trarstportagent in its search for a
feasible plan that executes all transportation requestsu¢h a case, the transport agent
must ask for a new reservation with a different starting tinxet;. How this is done will
be described in the planning methods in Chalpter 4.

The topic of the next section is to describe the quality ohsa@lan. Usually, there
are many plans that achieve the same goals (i.e., deliveryaight), but those do not all
have the same performance.
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3.4 Performance criteria

Beamon|(1998b) describes several important performamtegiarfor AGV systems such

as vehicle travel time, vehicle utilization, queue lengimd material handling cost.
Le-Anh and de Koster (2004) states that generally, muitega objective functions lead

to a better quality. Morton and Pentico (1993) suggest te tato account revenue, tardi-
ness, costs, and economic makespan as objectives. Fudiopawy an objective function

according to them is not worthwhile and, since it is applaaspecific, for the scope of
this thesis only several general functions are specifie@ tadbe to work with. This gives

a short-list with the followingobjectives

e The costs for executing the transportation plan,

e Travel time, waiting time, idle time,

Resource utilization, for transport network or transpesaurce,

Queue length,

e Earliness and tardiness of the transportation requests,

The number of accepted and correctly executed transpmrtegguests,

Economic makespan, trying to minimize resource utilizatenalizing intermedi-
ate (not final) waiting time.

The plan of a transport resouree R" consists of a rout®t,, a schedul&d,, and a load
and unload function that specify at what time each tranggiort requesb € Oy is loaded,
Lv(0), and at what time it is unloaded, i.&ly(0).

The performance function of such a plan usually is a tradd&etiveen cost and re-
ward. In general, this cost-reward optimization is nowiéidue to the imposed pickup
and delivery time-windows of the requests.

The following section describes how the cost of a transgiortglan can be specified.
The subsequent section describes other criteria, bestdswhich are often used in a
performance indicator.

3.4.1 Cost model

To determine the cost for the total system, one usuallyrdjsishes between fixed costs
and variable costs. The fixed costs, for each transport respare independent of the
usage of the resource, but are there because a company nustesw, or lease the

transport resource. The fixed costs of a transport resaurd®’ can be expressed as a
function ofC¢ (v) € T. Note that we measure the costs of a plan in terms of time.
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The variable costs depend on the amount of time the transgswtirce resides in any
of its states. A transport resource canWaiting, Loading Unloadingor Driving. In
order to specify the costs of these states in terms of thedstd®d, of transport resource
ve R, the loading costkc, and unloading costdc, are defined first:

Loading time cost&cy = (ly1,lv2,...,lun,),Where

a(fj) if Ly(oj) € [Sd,i,Sdi+1),
2 0 otherwise
0;€0y '

Analogously, the unloading time codti&, = (Uy1,Uy2,...,UyN,),where

0 otherwise.

b Y {@(f;) it Uy(0)) & [Scki, Sdii-1),
0;€0y

Then the departure times from each resourcedaye= (t,t;,, ...,y ), where

t\',J =tyj + Loy +Ucy;.

The total loading time in transport resounge plan isLoadSd) = > . t and the
total unloading time i&JnloadSd)) = » ., t- The total drive costs arbrive(Sd,) =
Yi=1..N, Sd(V Iy, ty;). The remaining time between the bitfly and deatfty , of transport
resourcev € R' is the waiting timeWait(Sd,) = (tgy — tpy) — Drive(Sd,) — Load(Sd,) —
Unload Sd,).

The variable costs of a transport resource € R is a function
Cv(v, Drive(Sd,), Drive(Sd)), Load(Sd,), Unload Sd,)) of these different states.

The performance of an agent, however, is more than only thes dor executing its
plan. One obvious aspect is the rewards agents can achiesebyting their transporta-
tion requests successfully.

3.4.2 Performance indicators

The performance of a multi-agent system is measured in tefie performance of the
individual transport resources. Several aspects are taman the transportation domain.
Among others, these af@ the cost a transport resource has to make for executing the
tasks assigned to ifij) the reward the agent receives for successfully executskgiand

(iif) the CPU cost a transport agent needs to compute its planafiee ICPU cost, gives
important information about the scalability of a system, i@other words, if a problem
instance increases in size (for example, more transpomntatiquests, more agents, more
incidents) can the multi-agent system still function withicceptable time?
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The specified load and unload time-windows associated watisportation request
oj = (fj,sj, 17, d,,r ;) are T} and rf' respectively. Let’? and fjd refer to the realized
time- Wlndows of request; € Oy andR; to the optimal plan for transport resource R".
The average tardiness per request, infrastructure comtsptort resource reward, and
finally the relative system welfare are defined as follows:

tardinesgt?, 1, 5, 7%) = max(0,ub(7?) — ub(}))

+ max(0,ub(t) —ub()),
average request tardiness Z tardlnessrj,r (51 T)/|O|,
{j:0j€0,
2err C(R)

ZVERUC( *),

m( ,,rf')

relative infrastructure costs=

relative transport resource rewarek

Z{joeo}nl( ) ZVERUC( )
Z{j:o,—eo}nl( i j)_ZveR"C( v)

In the experiments in Chapter 5, mostly the CPU cost (in tiame) the relative trans-
port resource reward will be used. Which performance iridics most important de-
pends on the problem domain. Also, at the strategic levehaiglt be more interested in
the transport resource costs (whether or not to allocatelditi@nal transport resource)
than for instance tardiness, while at the operational lévsl might be the other way
around.

system welfare =

3.5 Summary

In this chapter a detailed description of a model for operati multi-agent transport
planning is presented. The framework proposes a representar a transport network,
transport resources and their transportation plans,gmatetion requests and incidents.

Following Hatzack and Nebel (2001), the framework makesafsa non-classical
graph representation. Instead of modeling a transportorktas a classical graph with
edges and vertices, where both usually have different ptiegewe make use of a set of
infrastructure resources, having several propertie$) @onhnections that have no special
properties. This eases, for instance, the modeling of rads.

The key aspect of this framework is that it distinguishesMeen transport agents
and infrastructure agents. The infrastructure agents medervations for infrastructure
resources, which aids the search for conflict-free planthtransport resources.



Chapter 3. A framework for multi-agent transport planning 37

Infrastructure agents guard the usage of infrastructuseurees by only allowing
transport resources access to the infrastructure resourtieey have made a reserva-
tion. The exact duration of this reservation is previoustyedmined by an infrastructure
agent. This ensures, as proven in this chapter, that transgents together create a set
of joined plans that is free of conflicts.

In the next chapter a variety of planning methods are presetiitat make use of
the framework presented here to construct transportatemsp Because, as proven in
Appendix[D, finding the best possible transport planning &gy hard problem, the
focus is on searching approximation methods to big-sizatsportation problems.



74

Operational Transport Planning in a Multi-Agent Setting




4
Chapter

Planning methods

THOUGHT I'D TRY
THENSHORTEST PATH

IT SLURE WAS FAST,
BUT...

Multi-agent route (transportation) planning refers tophablem of finding a conflict-free
set of routes for a set of agents using a shared infrasteictur the previous chapter
a framework for operational transportation planning hasnbggresented and Section]3.2
proves that a set of agent routes is guaranteed to be freafitt®if the transport agents
query the infrastructure agents for the start and end tihedeh they will claim the
individual infrastructure resources. This chapter movwesoothe question how to build
complete transportation plans that that correctly exethgdransportation requests and
meet the customer’s deadlines.

In this chapter several approaches for multi-agent rowtarphg will be considered.
The first of these is the classical solution to transpontaplanning. In this approach the
transportation planning is split into a route-finding andoaftict resolution stage. This
approach is characterized by the use of basic shortest lgattithms and simple resource
usage rules that prioritize the agents on road crossingse that both stages might be
done during planning time, or the conflict resolution stagghinbe delayed until the
actual execution of the plans starts. The principal ideahefapproach is to lower the
complexity by first only considering which route to take,ritte schedule the entry and

75
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exit times of the infrastructure resources along the route.

The classical approach has several disadvantages. If asrdiie resolved during
plan execution deadlocks might occur and this affects tlediptability of travel times.
But also if conflicts are resolved during planning time, parfance might suffer from
fixating the routes before considering potential conflicithwwther transport resources.

Other researchers adopt an integrated approach, wheractoafiolution is inte-
grated with route planningcontext-awarerouting). The best known result is that of
Kim and Tanchocol (1991), which has a high computational dexiy. Furthermore,
one might doubt whether it is useful to invest this much timénding plans which can
be destroyed by a few incidents (and cause a re-planning).

Context-aware routing intuitively seems a good approadteal circumstances, be-
cause it computes optimal plans assuming that the othertsagennot make any plan
changes and the absence of uncertainty in the environmentever, it stands to reason
that context-aware routing only performs well in normataimstances, and performance
degrades in case of incidents. The reason is that the cemtexe routing method — as
opposed to the classical approach — delays agents basefonation about the plans of
other agents, but that information might no longer be valishcident-rich environments.

Therefore, the final part of this chapter considers sevgrptaaches that are more
robust in case of incidents and with respect to modeling taicgies. Because of this
uncertainty, it is practical that these methods operath bothe planning stage (before
execution starts) as well as in the execution stage.

The next section describes the first approach to transpmrtatanning, which is
called the classical approach, because later on the otreaportation planning methods
are compared to this approach.

4.1 Classical approach

A straightforward solution for operational transportatmanning is to leave the planning
to the agents, but constrain the plan execution in a way ainul the everyday traffic
regulation approach: use a set of operational conflicthuésa rules such as traffic rules
(keep right), traffic lights and dynamic traffic guidancetsyss to ensure effective conflict
resolution in the operational stage.

Hence, one could consider as a solution to multi-agentp@mastion planning to split
the problem in two parts:

e planningstage: apply individual route-finding algorithms to find atmute for a
single agent in a given infrastructure, and

e conflict-resolutionconflict resolutiostage: conflict-resolution mechanisms that can
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be used to resolve conflicts that arise due to the executiooutés found by route-
finding algorithms.

The simplest way to determine the route for an agent, negtethe presence of other
agents on a given infrastructure, is to have each agent hargest path from its current
location to its destination. A basghortest-path algorithpsuch as Dijkstra (1959), can
be used by the agents. Then comes the second stage of thardtapgroach. The
operational conflict resolution is done by defining resowsa&ge rules that prioritize the
vehicles if they enter crossroads at the same time. Thesen=susage rules can be based
on dynamic aspects, such as who arrives first at a crossroatht aspects related to
the importance of the task. Examples of static resourceeusdes are:

¢ highest-task-priority: the profits that can be earned faceting tasks is not con-
stant. For example, an ambulance, police or fire brigadetioracould precede
regular traffic,

¢ highest-vehicle-priority: there could be several diffaréypes of transport re-
sources, each with their own priority level.

Examples of dynamic resource usage rules are:

e first-come-first-served: for example, in the US at at 4-wpsntersection, the
vehicle that reaches the crossroad first gains the highiesityr

¢ longest-waiter-first: during plan execution, agents gagdiave to wait at several
occasions. This rule is similar to the previous one, but stirasvaiting times of
multiple crossroads,

¢ urgent-deadline-first: the agents are executing tasksddlivery deadlines. This
rule is similar to the previous one, but considers the urgemith respect to time
instead of task importance.

The problem with this classical approach is that travel s becoming almoshpre-
dictable an agent must at least have some knowledge of what the ajbatsaare doing
to know how this affects its own plan. Even more importanhis possibility ofdead-
locksto occur (see Figurfe 4.1a) which means the agents will nat beeable to execute
their plans. Finally, more knowledge about each other®astcan improve the agent’s
decision making, which in turn improves the performance.

It is possible to move the conflict resolution mechanism ihi planning stage as
well. Such a generate-and-test approach first generatestitess and then a test approach
is followed, which detects conflicts and finds a solutiong®problem. This makes the
resource usage rules described above more effective, dwesithe possibility for dead-
locks to occur, and it makes the travel times more predietabhis approach, however,
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(a) A deadlock occurs if both vehicles start driving without (b) Vehiclev; better takes the bottom de-
letting the other pass by first. tour, if it has to give way to vehicles and

vs, but it cannot know this without at least
considering the plans of the other agents.

Figure 4.1: Two examples that show the necessity of agemsonunicate their plans.

still starts with searching a route and then does not consitiernative routes anymore.
We believe it is better to integrate the route searching téhconflict resolution. This
is the essence of thentext-awarepproach we propose as an alternative to the classical
approach.

4.2 Context-aware routing

Context-aware routingFujii et al.,l1989; Kim and Tanchoco, 1991) refers to an apph
where during the construction of an optimal route from seur destination also the
consequences of the plans of other agents using the sarastrafiture have been taken
into account. This means that as a result of context-awargngthe set of routes of
the agents are conflict-free and individually optimal giviee routes of the other agents.
Context-aware routing, however, requires that the restdltsute plans of agents can be
stored and (locally) retrieved. Agents must be gBléo make reservations of parts of the
infrastructure andii) to be provided with detailed information about the avaiigbbf
parts of the infrastructure.

Context-aware routing — assuming that no incidents occherefore

1. ensures that the set of routes determined is conflici-free
2. ensures the predictability of the individual travel tsne
3. renders a separate conflict-resolution stage obsolete.

The next section describes context-aware routing for desiagent. This algorithm
solves the problem to find an optimal shortest path in timeaforagent given a set of
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transportation plans (which are assumed not to change)hef @igents. Subsequently,
Sectior 4.2.P2 considers the context-aware routing for afssgents.

4.2.1 Single-agent context-aware routinggACcA)

This section only considers planning for a single agentait lbe assumed that a subset
of the agents have already created plans and made resap/atibese reservations are
assumed to be fixed and executed as planned. The rest of thes @genot have trans-
portation plans at the moment, and can use the algorithnghwill be presented in this
section, to find a transportation plan.

To make clear that agents have to consider the plans (rémss)pof other agents let
us consider an example. The example shows why it does notesudfihave all agents
individually use a basic shortest path algorithm such aksi (19509).

Example 4.1 In Figure[4.1h a deadlock occurs if both vehicles plan togrse their route
as soon as possible. If vehialgenters resource before vehicler,, and vehicler, enters
resource g before vehiclesq, then a deadlock cannot be avoided unless at least one of the
agents modifies its route. The only solution is to have oneott lvaiting until the other
passes by.

In Figure[4.1b vehicler; has to make a choice between the upper rdrifg; =
(rs,r1,rz,ra,ra) and the lower routdRt, » = (rs,r6,r7,r8,r9,r4). Note that there are
no connectiongro,rg) ¢ Eg, (r10,r11) ¢ Er, et¢l. Obviously it chooses the upper route
Rt 1, which it can finish in fewer steps. But let us consider thenglaf all agents in
more detail. The plan for vehich is R, 1 = (r13,[0,1),r10,[1,2),r2,[2,3),r10,[3,4)).
Vehicle vz wants to go to resourcer;; via rz and has the planR, =
(r12,[0,1),r15,[1,2),r14,[2,3),r11,[3,4),r3,[4,5),r11,[5,6)). The first part of the plan
for taking the upper rout®t, 1 is R, 1 = (r5,[0,1),r1,[1,2),...). But there is the first
conflict. Vehiclesv; andv, cannot both traverse resource during the time-window
[2,3). Let us assume thap precedew, then vehicles; waits in resource; and enters
resource, at time 3, i.e.R, 1 = (r5,[0,1),r1,[1,3),r2,[3,4),...). The second conflict
occurs in resources and, again, we assume that vehiglénas higher priority than vehi-
cle vi, which results in the plaR, 1 = (r5,[0,1),r1,[1,3),r2,[3,5),r3,[5,6),r4,[6,7)).
This plan turns out inferior than the plan for taking the bott route R, > =
(r5,[0,1),r6,[1,2),r7,[2,3),r8,[3,4),r9,[4,5),r4,[5,6)). O

The above example showed that if an agent takes the plans othler into account it is
able to avoid conflicts that might occur otherwise. With tlassical approach, in the first
example the occurrence of a deadlock is likely, while in taeosid example the upper

LIn the examples in this chapter it is assumed that all infuasire resources — unless explicitly men-
tioned otherwise — have a capacity of 1 and can be traverskdrme unit.
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route would incorrectly seem better than the bottom detdunis is the advantage of
the context-aware routing algorithm over approaches g the conflict-solving to the
execution stage (such as the classical approach).

4.2.1.1 Single-agent context-aware source-destinatioouting

In this section the core part of the context-aware routigg@dhm is presented: how to
find a conflict-free shortest path in time from a source to @ilaison location for a single
agent. Conflict-free means that the plans of other agent&kea into account. The set
of reservations of the other agents, which planned prignéaturrently planning agent, is
assumed to be fixed and to be executed as planned.

Before presenting the context-aware routing algorithnmeaisn is devoted to extend
the framework presented in Chaplér 3 with the notion of fiseiwindows and free
time-window reachability. These are required for the crirgsvare routing algorithm.

Free time-window graph Instead of searching a shortest path in a graph, where the
nodes represent locations (i.e., infrastructure resglirtiee context-aware routing algo-
rithm searches through a graphfode time-windowsA free time-window is an interval
during which the infrastructure resource has sufficienacép available for an additional
transport resource to occupy the infrastructure resourthe idea is to search through
free time-intervals instead of reserved or forbidden tintervals.

The framework presented in Chapiér 3 includes, for eaclstiucture resouraes
R, a setQ(r) = A x W of agent time-window pairs representing the reservatidrasl o
agents. For the context-aware routing algorithm, a setes frme-windows specifying
when the resource can accept additional presence of a tndnsgource is defined in
terms of the set of reservatio@® Agents can safely create reservations in time intervals
that are within the bounds of these free time-windows.

Definition 4.2 (Free time-window) Given resource; and the agent-reservatiof$r;) =
A x W on resource;, a free time-window om; is an intervalfi y = [g; v, @) such that:

1. Ve fiy: |{(aj, k) € Q(ri) s te ie}| < KM (i),
2. (n7v_0-i7v2 dlnf(ﬂ)

The first condition states that for an interval to be a freeetimindow, there should not
only be sufficient capacity at any moment during that interamad the second condition
of Definition[4.2 ensures that it is also possible to travéngeresource before the end
of the time-window. Note that the collection of free timengdbwsF on resource;j is a
list (fi 1, fi2,..., fim) Of disjointintervals such that for ajle [1,...,m—1], f; j precedes
fi j+1.
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The context-aware routing algorithm is based on the ide@wiggfrom one free time-
window on one resource to another free time-window on amatsource. The reacha-
bility relation p defines when two free time-windows are reachable:

Definition 4.3 (Free time-window reachability) Given a resourcerj, a free time-
window fj, on this resource, and a timiethe free time-windowf;,, on resource is
reachable fronm; at timet, denotedf; \ € p(ri,t), if:

1. (ri,rj) €E,

2. te (fivn fjw),

3. t—ay = d"(r),
4. @ w—t=dn(r)).

The first condition in Definition 413 ensures that the resesircandr; are connected.
The second condition states that times contained both in the free time-windofyy

of resourcej as well as in the free time-windowy \, of resource j, and these free time-
windows overlap. The third condition ensures the tranggsidurce does not exit resource
ri before it had time to traverge and the fourth condition requires there will be enough
time to traverse resource if the transport resource entersat timet.

Basic shortest-path algorithms, such as Dijkstra (1958 at consider the plans of
other agents while searching for a shortest path in time fileensource to destination
location. Context-aware routing algorithms do take thie @ccount. In Dijkstra’s short-
est path algorithm, when a node is selected for expansimsitre that the current path
to this node is the shortest, and the algorithm does not reeedrtsider any other paths
leading to this node. In context-aware routing, on the ottaerd, it does not suffice to
consider infrastructure resources only once. The first imesource is considered, one
has indeed found the fastest route from the source locaditmresource (say arriving
at timet), but in an optimal plan from locatiory to destinatiorry it might be necessary
to enter resourceat some time’ later ¢’ > t) due to reservations of other agents.

Example 4.4 Figure[4.2 shows why it is not sufficient only to consider thdiest pos-

sible visit of a resource. From the first (and only) free timedow on start resource,

both free time-windows on resource (which is on a direct path to the destination re-
sourcerg) can be reached. However, from the first free time-windowrf1 1 = [0,2),

no free time-window omy can be reached, because on the destination resource there is
a reservation until time 5. Hence, a transport resource gu$tomrg to r1 at time 4
(assuming travel times of 1 for all resources, by time 4 reserg can be traversed). The
transport resource can leavgat time 5, enteringq at time 5, at the start of the free
time-window on the destination resource. 0
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Figure 4.2: The first arrival at resourcg at time 1, will not lead to the shortest path to
destination resourag. Instead, the path that visits during its second free time-window,
starting at time 4, must also be considered.

Now the notion of free time-windows and free time-windowaleability has been intro-
duced, an algorithm can be described that takes resersaifasther agents into account
by considering these free time-windows.

Context-aware source-destination algorithm For a clear presentation our context-
aware routing algorithm will be presented in steps. Thigiseconsiders how an agent
searches a shortest path in time, from a source to a destinatiation, taking into ac-
count the reservations of a set of other agents.

Because agents usually have multiple transportation stgiassigned to them, in Sec-
tion[4.2.1.2 the algorithm is modified to search a shortegitrp time along a sequence
of pickup and delivery locations (this sequence is refetoeds thevisiting sequenge
Finally, Sectiori 4.2]2 presents the multi-agent contevdra routing algorithm that finds
a route for all agents instead of just for one.

In this section the context-aware source-destinationratgo is described, which
searches a shortest path in time for a single agent, givenraesgusually the location
where the agent resides) and destination location. Thextatvareness comes from the
fact the algorithm takes information about the plans of titeoagents into account. This
is realized by storing reservations by other agents to gcaugsource in the infrastruc-
ture. Using this information the context-aware routingoaitnm can search a shortest
path in time avoiding any conflicts with other agents.

The context-aware routing algorithm maintains a qu€uef candidate solutions,
which is sorted by the costs made in the partial solution so Téhe cheapest partial
solution, the element at the front of the queue, is retridveh the queue. This candi-
date solution is then expanded by appending reachableifneewtindows to the partial
route, provided that no constraints are violated. If suclegmansion means that the
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Algorithm 4.1 Context-aware shortest-path routing.
1: function CONTEXTAWAREPATH(rs, rg,ts)
2: Pre: start resources, destination resourag, start timets.

3: Post: entry time intorg for the shortest path from; to rg.
4: if v[fsyeFs|tse fsy] then
5: Q—{(rsts)}
6: end if
7: while Q # @ do
8: (ri, ti) < argminy, ot +d™(r))
9: Q — Q\{(ri,ti)}
10: if ri =rq then
11: return FOLLOWBACKPOINTERS(rj,tj)
12: end if
13: forall fjyep(ri,t) do
14: tentry = max(ti +d"(r;), oj v)
15: if CONSTRAINTSOK (I, I}, tentry) then
16: Q<Qu (rj atentry)
17: Fj « Fj\{ ijv}
18: backpointefr j, tentry) < (ri,ti)
19: end if
20: end for

21: end while
22: return NOPOSSIBLEPATH
23: end function

new resource can be reached earlier than without the cuexpainsion, the resource and
reached free time-window at that resource are added to gQeared a backpointer is
stored to the resource and free time-window pair from whid ieached. Finally, these
backpointers are traversed to reconstruct the shortesiipp@epath from the source to the
destination infrastructure resource.

Algorithm[4.1 presents the pseudocode of the single-agemts-destination context-
aware routing algorithm, which will now be considered in maletail. The algorithm
expands a partial plan by looking at which free time-windaas be reached, rather
than by expanding the plan by reachable resources. In[linlke5ppen listQ of free
time-windows is initialized to the start resource and tretsime. In Linel 8, the open
list element(r;, t;) with the lowest cost; + d"(i) is retrieved. Hence, the open list ele-
ments are sorted in order of increasing (minimuwerit times. Only the(rj,ti) pairs are
stored on the open lig), but the complete route and schedule can be reconstructed us
ing backpointers that point to the previous resource-tiaie Fhese backpointers, set in
Line[18, point to the resource-time pair from which the neadygled resource-time pair is
reached. TheoLLOWBACKPOINTERSfunction then simply reconstructs the route back-
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wards from destination to source resource by following thekipointers, to return the
shortest path in Ling11.

To expand the current free time-window, in Ling 13, all (rese, free time-window)
pairs that are ip(r;,t;) are considered. The entry time into a reachable free tinmelow
fiv=1[0jv, @ v) is either the entry time into the previous resourgalus the time it takes
to traverse;, or, in casef; , starts aftet; + d‘“f(ri), the start timeg; y of fj .

Line[18 checks additional constraints with regard to theentrexpansion candidate.
FunctionCONSTRAINTSOK returns true if the constraints with respect to head-on and
catching-up conflicts are met (see Secfion 3.2.2.2). Linadds the new element to the
open listQ, and, Line 1V removes the free time-winddyy, from the set of free time-
windows Fj of resourcerj. This is an important step, as it guarantees that we do not
consider any free time-window for expansion more than once.

The next section presents a proof of twrectnesof the context-aware routing al-
gorithm.

Correctness of the single request variant An algorithm is consideredorrectif, and
only if, assuming that the starting point is a set of transgiam plans that are free of con-
flicts, any new transportation plan computed by the algorith possible to be executed
and not in conflict with an already existing plan of some agent

First, note that the plans constructed by the context-awargng algorithm can al-
ways be executed, assuming no incidents occur, becausexheesource to be visited is
always selected using the reachability relatgon

Second, assuming the plans of the other agents are condlggtthe resulting set of
transportation plans are also free of conflicts. This folatirectly from the fact that
the resulting plan only creates new reservations withiretinervals that were free time-
windows.

Optimality of the single request variant The context-aware routing algorithm finds
the optimal route from a source to a destination resouregtirsg at a given time, and
assuming that the environment is fully known (i.e., no iecits, no more changes to the
plans of other agents and no uncertainty in the environment)

Proposition 4.5 Algorithm[4.1 returns an optimal solution, given the plamsl aeserva-
tions of the other agents are fixed.

PROOF. First we prove, by induction, that during th& execution of the while-loop in
Line[7, each paifr;,tj) € Q on the open lisQ represents the earliest time to reach the free
time-window f; y, having started fronrs,ts).

Initially, the open list contains onlyrg,ts), and the induction hypothesis holds for
n=0. Suppose now that aftar= 0 iterations of the while-loop, the pdir;, ;) is retrieved
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from the open list in Lin€]8. Let;y € p(ri,t;) be the free time-window to be expanded,
and the earliest exit timgyj = tj + d'“f(ri). Now there are two cases to consider:

1. texit < 0jv. In Line[14, the entry time intd; is determined to bej,. Clearly,
the free time-windowf; , cannot be entered earlier than its start timjg, so the
induction hypothesis also holds for the péif, 0 v) that is added to the queue.

2. texit > Tjy. The entry time intof; , will be texit. To see that no earlier entry time
into f; is possible, note thatk # i, (I, t) € Q : texit < tx +d™(ry) (this follows
directly from Line[8). Hence, for any pair, ty) such thatfj , € p(rk, tx +d"(ry)),
the entry time intofj \would be at leadyi.

A second point to note is that there will be no iteratioe- n such that a paifrm, tm)
can be inserted int®, such thaty, + d"™(ry) < texi. If @ new elemen{rm, ty) is
inserted into the open lis) as a result of expandin@y,tx) € Q, for somek # i,
thentm 4+ d™(rm) > tm =t + d"(r) > texit.

Hence, there is no earlier entry time possible into windgwthanteyi and the pair
(rj,texit) Satisfies the induction hypothesis.

It is now clear that in each step of the algorithm, a gait;) is expanded to all free time-
windows reachable from the free time-window determinedrhy;). This means that the
free time-windowf; , can safely be removed in Linell7, because it is impossibl@dtiefi
path that reaches this free time-window earlier.

The proposition now follows since also for the destinatiesaurcery it holds that
if the pair (rg,t;) is taken from the open list, the backpointers to this pairesent an
optimal path fronrgto rgq starting at timds. Hence, Algorithni 4]1 guarantees to find the
first possible entry time into the first reachable time-wivdm destination resourcg.m

Besides the fact that the algorithm is correct, it is alstefathan any competing existing
algorithm . The best known result is that of Kim and Tanchdd@®(). In the next section,
an analysis is provided of the time complexity of our cord@wiare routing algorithm.

Time complexity of the single request variant Proposition 4.6 gives the run-time com-
plexity of the single-agent context-aware source-destinalgorithm. The proposition is

followed by a proof. Subsequently, the run-time compleistglso expressed in terms of
the transport network size and number of agents, to maksigret® compare this method
to other approaches.

Proposition 4.6 Algorithm[4.1 has a run-time complexity Of |F |log(|F|) + |p]).

PROOF. A free time-windowf € F can be put onto the open liQ at most once, and
in every iteration of the while-loop in Lingl 7, one free timeadow is removed from
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Q. Hence, this while-loop is executed at mdist times, and none of the Lingés[8411
contribute more tha®(log(|F|)).

An important observation is that Linés]14418 (inside theldop) also execute at
most|F| times. In these lines, a free time-window will be adde@t@nd that can occur
at most|F| times. Inserting an element int requiresO(log(|F|)) time. Removal of
the examined free time-windowy , can also be done withi®(log(|Fj|)) = O(log(|F|))
time.

Furthermore, at Line_13 every element mfmight have to be inspected during the
run of the algorithm — but no more than once. Hence, Lide 13rimrtesO(|p|) to the
complexity of the algorithm.

Hence, Algorithni 411 has a run-time complexity®f|F|log(|F|) + |p]). n

Usually, the run-time complexity of algorithms is specifiadterms of the number
of infrastructure resources and connection of the tratspetivork. The same can be
done here, after making the assumption that transport resetave at most a constant
numberc of reservations per infrastructure resourcec(i 1 this effectively disallows
cyclic routes).

Corollary 4.7 If transport resources cannot have more than a constant murbreser-
vations per resource (e.g., only acyclic plans are allowtan Algorithni 4.1l has a run-
time complexity o (|R" ||R™|log(|R"||R™]) + |Er||R"]).

PROOF If transport resources can have at most a constant numbkreservations in
a resource, each infrastructure resource can have atafjstreservations. This means
IF| is bounded byc|R"||R"|. At the same time|p| < c|Eg||R"|, because for each arc in
the transport network at mosiR" | free time-windows can be reached in the resource the
arc connects to.

Hence, we have thdF |log(|F|) + |p| < c|R"||[R™|log(c|R"||R™|) + c|ER||R"|. m

Because agents usually have multiple transportation stgassigned to them at the same
time, the next section describes how the context-awareitigocan deal with a (visiting)
sequence of pickup and delivery locations.

4.2.1.2 Single-agent context-aware visiting sequence itng

The source-destination routing described in Sedtion ZlZ&émputes a shortest path in
time for an agent to traverse from its initial location to astilgation location. But in
transportation planning, agents have to look further. Tdagybe assigned multiple orders,
and hence have to create a plan to visit multiple locaticer &éch other. The sequence of
loading and unloading locations that the agent has to ttavelreferred to as thesiting
sequencef the agent.
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Algorithm 4.2 FunctionVISITING SEQUENCE computes a shortest path in time along
loading and unloading resources in the plan of a transpsduree, while taking into
account capacity constraints of the vehicle as well as f@pdind unloading times.

1: function VISITING SEQUENCHL,r1,r2,...,Im)

2: Post: The shortest path in time along the visiting sequence

3 (Rt,Sd)) < (ry,t)

4 for iel..mdo
5: t < Sd,n + (un)loading times in resourdey,,
6: (Rt,,Sd,) < CONTEXTAWAREPATH (I, rjy1,t)
7.
8
9

if (RY,Sd,) # NOPOSSIBLEPATH then
(R, Sd,) < (Rt,Sd,) (Rt Sd)

: else
10: return NOPOSSIBLEPATH
11: end if

12: end for
13: return (Rt,Sd)
14: end function

The VISITING SEQUENCE algorithm (Algorithm[4.2) computes shortest paths along
the ordered pickup and delivery resources, i.e., the mggiequence of resources, of the
agent. Re-ordering of the resources in this visiting segeieas well as exchanging them
with other agents, is considered a decision at the tacteal |

Correctness of the multiple request variant The single-agent context-aware visiting
sequence algorithm is in fact a series of single-agent gbateare source-destination
route plannings. Hence, we already know that these plansaarect and only have to

consider the visiting sequence resources themselvesptiaéidns where the plans are
concatenated.

This is, however, also very easy due to one of the invarian&ectio 3.2]1. All vis-
iting sequence resources are either the start or end loaaitibe transportation resource,
or it must be a pick-up or delivery resource. In all of thesgesa the visiting sequence
resource has sufficient capacity to make a conflict with atigents impossible.

Optimality of the multiple request variant In Chapte B the assumption was men-
tioned that loading and unloading resources have suffigapacity to hold all trans-
portation vehicles. This simplifies the application of tlmiice-destination variant of
context-aware routing to visiting sequence routing. Nasrtéle optimal route along the
visiting sequence is a simple concatenation of the optimales between each pair of
adjacent location in the visiting sequence. This can easilgeen, because the agent can
wait indefinitely in any of the resources in the visiting segce. It can, therefore, never
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be an advantage to arrive later in any of the resources insiteng sequence. Without the
sufficient-capacity assumption one would have to considgtitstage routing (Ter Mors,
2007), which can still efficiently be solved (in polynomiahe).

In the next section one can see what happens to the time coityg&the single-agent
context-aware routing algorithm if a set of transportatiegquests per agent is considered.

Time complexity of the multiple request variant In Sectiorf4.2.1]1 it was shown that
the single-agent context-aware source-destination ighgor(Algorithm[4.1) has a run-
time complexity ofO(|F|log(|F|) + |p])-

The visiting sequence routing algorithm applies this athar at most twice for each
transportation requeste Oy assigned to transport resource R (once for the pickup
location, once for delivery). This means Algoritim14.2 hasua-time complexity of
O(|F[log(|F[)|Ov] + |plIOW).

With the assumption that all transportation plans are acydgorithm[4.1 has a run-
time complexity ofO(|R"||[R"||Oy|log(|RY ||R™|) + |ER||R"||OV]).

The single-agent context-aware visiting sequence atguoritan plan multiple trans-
portation requests for a single agent, taking into accdumteéservations of other agents.
In the next section, transportation planning for multigeats is considered.

4.2.2 Multi-agent context-aware routing (MACA)

Until now this chapter considered the context-aware rgudipproach for a single agent,
given fixed plans of the other agents. In the transportatioblpm, however, there usually
is a whole fleet of agents for which transportation plans havee constructed. The
context-aware routing method can then be applied itedgtiweall agents in the fleet, in

an arbitrary order.

Clearly, in such an iterative approach, the quality of thenplof the agents depends
on theorder in which the agents create their transportation plans. elegihe final set of
plans of the agents might not be a global optimal set of pldaresflan an agent creates
is still the best it can do, given the plans of the agents wlezguted in the planning
process remain fixed). Furthermore, there might not evest ariordering of agents that
results in a global optimal set of plans, due to the fact thatagents create a complete
transportation plan one by one.

For the multi-agent version of context-aware routing amedmsed approach is used.
Each time a new transportation request is assigned to am, dlgisragent searches a mod-
ified plan which includes the newly arrived transportatieguest. Hence, the arbitrary
order in which the agents plan in this case is controlled leydtder in which the trans-
portation requests are assigned to the agents.

This new method (see Algorithim 4.3), used each time a newgp@tation request is
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Algorithm 4.3 PROCESNEWREQUEST method using insertion heuristic.
1: function PROCESNEWREQUEST(f € F,se R" tSe W,d e R™ 19 e W, e R)

2: Pre: New request is assigned to transport resoure®" of agenta e A.
3 Post: PlanR, = (Rt,, Sd,) includes the execution of the new request.
4 forall (i,j):2<i<j<n+1ldo = pickup detour at indek delivery at;j.
5: (RY,Sd)) « VISITINGSEQUENCE(Sd,1,RY,1,...,Rt,—_1,5 RY, ...,

- Rtj_1,d,RYj,...,Rin)

6: if u(R{,Sd) > u(Rt,Sd) then
7 (Rt,Sd) < (Rt;,Sd))

8: end if

o: end for

10: end function

assigned to an agent, is calledoOCESNEWREQUEST. This method makes use of the
VISITING SEQUENCE algorithm described in the previous section (Algorithm)4vzhich
computes shortest paths along the sequence of pickup amérglelesources, i.e., the
visiting sequence of resources, of the agent.

The agents execute tHFROCESNEWREQUEST method in the order in which the
transportation requests arrived and without interlea¥irggplanning with other agents.
Due to both of these factors the resulting plans are submaptiFirst, due to the arbitrary
ordering: suppose that agemtplans earlier than ageas in this ordering of agents, and
that agentsy anday share some infrastructure resources in their routes. [fpaimal
plan requires that ageap precedes agemt; in at least one of these share infrastructure
resources, this plan might not be found (in the case that@ageaaches the infrastructure
resource earlier than ageat). Second, due to the absence of interleaved planning: if
agenta; first has to precede ageat, but later has to take priority in any optimal plan,
then such a plan also cannot be found, because the agerts areamplete plan for all
of their transportation requests at once when it is the.tur

Algorithm[4.3 describes how a new transportation requassierted into the possibly
already existing plan of an agent. Note that, for simpliggveral algorithmic optimiza-
tions have been ignored here. For example, if a detour irjdexnot allowed due to
capacity violation, one does not need to check indexesgréanj; instead, index can
be increased. Furthermore, routes can be cached. Durirgpthputation many similar
routes are searched, often with more or less the same gtania. Hence, some time can
be gained.

4.2.2.1 Correctness of the multi-agent variant

In the multi-agent context-aware algorithm an agent maglifeecurrent route by inserting
a pick-up detour for an additional transportation requastadelivery detour as well. It
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then compares its plan with the old version and if its perfamoe improves, the agent
accepts the additional transportation request and modsipsan accordingly.

Because this is assumed to be an atomic operation, and vaelalkeow the single-
agent visiting sequence routing algorithm is correct, naflccis can arise from this pro-
cess. Therefore, assuming a conflict-free starting poa,nbulti-agent context-aware
routing also results in a set of transportation plans thalsis free of conflicts.

4.2.2.2 Optimality of the multi-agent variant

Section 4.2.1]2 showed that the single-agent contexteawiaiting sequence algorithm
correctly computes a shortest path in time for a single agesn reservations of the
other agents.

The multi-agent context-aware routing applies this alipomiin a sequence. At each
iteration, an agent uses AlgoritHm #.2 of which it is knowis throduces a correct plan
given the reservations of other agents. Hence, the numbersefvations grows while
more agents constructed their transportation plans ardreag transportation plan does
not conflict with any of the already existing plans. Therefdrcan be concluded that
the set of transportation plans that exists after the finehagonstructed its transporta-
tion plan is a correct set of plans that can be executed witaioy problems (assuming
execution goes according to the plans).

Furthermore, assuming no incidents and no hard pickup oresigldeadlines, a trans-
portation plan that executes all transportation requast®ectly always exists and is al-
ways found by the multi-agent context-aware algorithmah easily be seen that a plan
exists for all of the agents, by considering the followingt ¢éach agent wait in its ini-
tial location (which by definition has sufficient capacityjhen select one by one all of
the agents and let the selected agent execute all of itsn@skigansportation requests.
The next agent selected only starts after the previous digestied execution of all of its
requests. Hence, in this plan no conflicts are possible,usecao two agents reside in
a location with limited capacity, a necessary conditiondaronflict. This proves that a
multi-agent conflict-free transportation plan always &xi$f a better plan does not exists,
Algorithm[4.2 will always find this plan.

In the next section the time complexity of the multi-agentext-aware routing algo-
rithm is described.

4.2.2.3 Time complexity of the multi-agent variant

In Sectior 4.2.1]2 it was shown that the single-agent coraeare visiting sequence al-
gorithm has a run-time complexity 6?(|F |log(|F|)|Oy| + |p||Ov|) and with the assump-
tion that all plans are acyclic a run-time complexity®@f|R"||R™||Oy|log(|R"||R"|) +
[ErIIRT[|OV)).
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In the multi-agent context-aware routing algorithm all migecompute their trans-
portation plans in a sequence. The total number of conteareshortest-path computa-
tions is simply twice the number of transportation requests once for each pickup and
once for each delivery location. Hence, the time-compjeaitthe multi-agent context-
aware routing algorithm i©(|F|log(|F|)|O| + |p||O|) and with the assumption that all
plans are acyclic a run-time complexity 6f |RY [|R"™[|O] log(|RY||R") + |ER||R"[|O)).

In this context-aware routing section we have describedsthgle-agent context-
aware routing algorithm and how to construct a multi-ageartant by applyingsaca
iteratively. We are after all interested in searching tpamgation plans for a set of vehi-
cles. The next section presents some interesting propetitheMACA algorithm and
comparesMACA to other approaches.

4.2.3 Properties of the multi-agent context-aware routing

This section describes properties of thecA approach. First, the quality of the solu-
tion is considered. Subsequently, a comparison is madecketihe classical approach
presented in Sectidn 4.1 and the multi-agent context-amarténg approach. Finally, the
approach is compared to two related approaches; that of Kdnfanchoco (1991) and
of Hatzack and Nebel (2001).

4.2.3.1 Solution quality

A Nash equilibrium [(Nash, 1950) is a situation in which nogdénagent is capable of
improving its performance by making changes to its plaithoutother agents changing
their plans as well. The importance of reaching a Nash daguiln is that the situation is
stable; no single agent can make any progress modifyindats vithout forcing other

agents to make other decisions.

The multi-agent context-aware routing approach alwaysltes a Nash equilibrium
— a local optimum. Each of the agents computes an optimal gjzen the reserva-
tions of other agents at that time. Then it immediately @gaéservations for this plan.
Hence, none of the agents can improve its plan, without figrather agents to make
other choices.

In general, however, the multi-agent context-aware rguajpproach results in a local
optimum, not a globally optimal solution. Finding a globationum, however, is a much
more difficult problem, because, for each possible conlitpossible orderings of agents
must then be considered.
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CLASSICAL MACA
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Figure 4.3: classical versus context-aware approach. Bgeht can choose to travel to
its destination via the center resourgdollowing the solid arrows, or take the alternative
route given by the dashed arrows.

4.2.3.2 ComparingMACA to CLASSICAL

In this section, the classical approach is compared to theegbaware method by giving
examples. The first example shows how a central resourceax@mie a bottleneck in
the classical approach, while the context-aware approastydinds alternative, non-
congested routes. In this example the context-aware mstgaodicantly outperforms the
classical approach. The second example illustrates tedtékdom of the context-aware
planner can sometimes lead to plans that make it harder fiseswent agents to find
efficient plans. This shows that the classical approach eauperior too.

Based on these examples a general conclusion cannot be.draenmefore, in the next
chapter experimental evidence is used to compare both agpes.

Example 4.8 Suppose that there aneagents in the transport network illustrated by Fig-
ure[4.3. Each agers; has the choice between two alternative rout@sfrom its ini-
tial location via the center resourcgto its destination resourcér,is,rc,rh), or (i) take
the outer detour, which is one step longer, following thehedsarrows,(ri i, ri ri,).
Using the classical approach, all of theagents will choose the former route, travers-
ing resourcere. The first agent will then reach its destination at time 3, skeond
agent has to wait 1 time unit, the third agent one more, etas f@sults in total costs
3+4+...+ (M+2) = (m+2)(m+3)/2—3 and a makespan oh+ 2. If Dijkstra’s
shortest path algorithm with Fibonacci heap was used, the tomplexity would be
O(|R"|-|R"log(|R™|) 4 |ER|), whereR" is the set of transport resourc&’ the set of
infrastructure resources afg the set of connections between infrastructure resources.

If the context-aware method is used, the first agent wouldpedenthe same plan
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Figure 4.4: Another example compariggASSICAL to MACA. The vehicles in resource
I's1are named 1, vi 2 andvy 3, and the vehicles in resource, are named, 1, vo » and

V2 3.

and go via resource;. The second agent would select either way, with equal prob-
ability. Let us say that it would also go via resounge Then, all other agents will
avoid resourcea. and take the alternative route. The total costs now ared3- 4 +
...+4=3+4(m-1) and the makespan is only 4 (or 3nf=1). Time complexity is
O(|R¥||R™||O] log(|RY||R™]) + | E||R¥||O]).

Both of the given performance indicators, summed totalscastd makespan, have
improved by a factom and the context-aware method is better for any number oftagen
m > 2 in this example (and equal fan < 2). O

The context-aware method has some amount of overhead inutatigm time by solving
conflicts in advance (although it takes no more than polyabtimne). We expect the
context-aware method to be somewhat slower than the césgiproach, even though, if
the classical approach is used, conflicts will still have @éasblved during the execution
phase.

Due to the arbitrary ordering in which agents plan, it is giessible, however, to
construct a negative example in which the classical approatperforms the multi-agent
context-aware method.

Example 4.9 This time consider Figurle 4.4. Its infrastructure has twaglaorridors of
resources. Three vehicles in resourggwant to go to resourcey 1, while the three ve-
hicles in resources, want to go to resourcg ». All locations, except for the pick-up
locationsrsy andr; >, and the delivery locations; ; andrg 1, have capacity 1. Further-
more, all resources have the same constant traversal tyé, time unit.

Assuming the vehicles are identical (except for their ahikbcation), there arég) =
20 possible sequences in which the vehicles can plan. Hdiesk are listed in Table 4.5.
The first column displays the order in which the vehicles p&h Notice that the miss-
ing ten rows can be found by swappimg; with vo; for i € {1,2,3} in the first column.
These are the same due to the symmetry. The second colums sih@werformance of
the vehicles, which is here computed as the sum of the trawektof the six vehicles.
The third column displays the makespan, which is the wondbpmance (the maximum
individual vehicle performance).
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| Order | Performance | Makespan |
Vi1 | Vi2 | V13 | Vo1 | V22 | V23 o9n+17 2n+4
6(n+3) (50%),
Vi1 | Vi2 | Vo1 | V13 | V22 | V23 9(n n 1; ((50%)) n+4,2n+4
Vit v L vas | vos | vea | v 6(n+3) (50%), h+17| n+4,2n+4,
112 Y2l ¥22 ) T3 ) 123 | (250%), 1h+ 15 (25%) 3n+2
6(n+3) (50%),
Vi1 | Vi2 | Vo1 | V22 | V23 | V13 1(1n n 1)5((500/()) ) n+4,3n+2
Vi1 | Vo1 | V12 | V13 | Vo2 | V23 6(” + 3) (100%) n+4
Vi1 | V21 | V12 | V22 | V13 | V23 6(n + 3) (100%) n+4
Vi1 | Vo1 | V12 | V22 | V23 | V13 6(n + 3) (100%) n+4
Vi1 | Vo1 | Vo2 | Vi2 | Vi3 | V23 6(n+ 3) (100%) n+4
Vi1 | Vo1 | V22 | V12 | V23 | V13 6(” + 3) (100%) n+4
Vi1 | V21 | V22 | V23 | V12 | V13 6(n + 3) (100%) n+4
Minimum 6(n+3) n+4
Expected On+ &8 2n+ 4
Maximum 1In+15 3n+2

Table 4.5: Possible performance outcomes for Example 4.9.

Via | Is1 | Tu1z| --- | Tun | Fda n+2
Vo1 | Ts2 | M1 | ... | Tin|Tld2 n+2
V12 rs1 rua | --- | fun | fda n+3
V22 Is2 Na| ... | Nnild2 n+3
Vi3 rs1 rua| --- | fun | fda n+4
Vo3 rs2 Ni| .. |MNn|rld2 n+4
6(n+3)

Table 4.6: An optimal plan for Examgdle 4.9. This plan represé¢hat all vehicles starting
in resourcers; take the upper route and all vehicles starting in resougeetake the
bottom route.

The MACA algorithm often finds the optimal solution, which is the pimown in
Table[4.6. It can go wrong if the planning sequence starte wib vehicles and the
second one chooses the alternative route. A sub-optimalvaplhalways be reached if
the three vehicles in resource; plan before the vehicles in resounce, or vice versa.

Table[4.7 shows the final plan if first all vehicles in resourgereserve their plans,
and then the vehicles in resourcg. The optimal plan cannot be constructed in this
case. Although the first vehicle will always choose the uppete, because this is the
fastest, the the second vehicle might also (now the twortees are equidistant), the
third vehicle will then surely choose the bottom route. Efiere, the optimal route will
never be constructed in this case. This corresponds to thedw of Tablé 4.5.
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Vi1 | Is1 ‘ fug | --- | Tun | Mda n+2
V12 rs1 ru1 | --- | fun | 'd1 n+3
Vig [ Isi|fin| oo [ na|rs2 | ras n+3
V21 rs2 Na1| -.- | Nnlld2 2n+2
V22 ls2 M| ---|Nnild2 2n+3
V23 Is2 Na| ... MNn|ld2 2n+4
9n+17

Table 4.7: A sub-optimal plan for Example ¥.9. If vehicleg andv, » both use the upper
route, then vehicle, 3 always chooses the bottom route, because it then reaclesces
rq,1 faster. Hence, the optimal plan is never reached if the the@écles in resources |
reserve their plans first (and vice versa).

Vi1 | Fs1 | Tur | --- | Fun| lda n+2
Vig [Fsi | fin| - | N1 |Ts2|ld1 n+3
V21 Is2 M1 oo | Nin | rd2 2n+2
V13 rs1 | fuz] --- | run|ras n+3
V22 Is2 N1| .-« | Nn|ld2 2n+3
V23 rs?2 Ni| ... | Nin|ld2| 2n+4
On+17

Table 4.8: A sub-optimal plan for Example ¥#.9, which occiireehiclesvy 1 andvy > do
not choose the same route.

If first two vehicles in resources; plan, then one vehicle from resounce, imme-
diately followed by the remaining vehicle of resourgg, then there are two possibilities
that are even likely. Either vehicles ; andvy » both choose the upper route and the result
is the optimal plan as illustrated in Talyle 4.6, or vehiglg selects the alternative route
and the result is as given by Tablel4.8 which has a performain@e+ 17..

The third row of Tabl& 4]5 shows three possibilities. Thaeplag order of the vehicles
here is(v11,V12,V2.1,V22,V1 3,2 3). If the first two vehicles choose the upper route, the
optimal planis reached. Because vehigle always chooses the upper route, this happens
in 50% of all cases. For the other 50% of the cases, the uppdyatom part of Table 419
are both even likely. The difference between those two istldrevehiclev, » will choose
the upper or bottom route, which have exactly the same distawhich choicev >
makes, however, has a great influence on the performancéiolere, 3.

The final situation that can result in a sub-optimal plan fier¥ehicles is summarized
on the fourth row of Tablé_ 4l5. Again, if vehicles; andv; > would both choose the
upper route, then the optimal plan would have been found.ofher 50% results in the
plan given by Table4.10.

Table[4.5 lists all possible performance outcomes of thésvele. The best perfor-
mance of ¢n+ 3) is found in 75% of all possible orderings in which the vetsatan plan.



96 Operational Transport Planning in a Multi-Agent Setting

Vil | Is1 | Tu1l| --- | Tun | Fda n+2
Vig [ Isi | Min| --- | N1 Ts2 | Td1 n+3
Vo1 Is2 M1 MNn|ld2 2n+2
V22 ls2 N1| ... | Nnj'ld2 2n+3
V1.3 ls1 ‘ lu1 ‘ ‘ Fun | a1 n+3
V23 Is2 Maii ... MNn|ld2 2n+4
On+ 17
Vi1 | Fs1 | Tur | --- | fun | lda n+2
Vi [Isi|fin| -~ | Na1| Ts2 | ld1 n+3
V21 rs2 M1| .- | Mnlld2 2n+2
V22 I's2 fun | -~ | Tur | s1 | a2 2n+3
V13 r's1 rga | --- [ fun|fga| 3n+2
V23 Is2 ‘ M1 ‘ oo | Nin | Fd2 2n+3
1In+15

Table 4.9: Assuming that vehicles ; andvs » make a different choice, there are two
equidistant choices for vehicle . Two sub-optimal plans for Examgdle4.9.

Vi1 | Is1 | Tu1|--- | Tun| Fd1 n+2
Vig [ Is1 | Min |- | 1| Trs2 | Td1 n+3
V21 Is2 M1| ... | Nnlfld2 2n+2
V22 rs2 Na| .-« | Mnj'ld2 2n+3
V23 Is2 ‘ frun | --- | Tu1x | I's1 | lg2 2n+3
V13 rs1 rga | --- [ fun|fd1| 3n+2
1In+15

Table 4.10: The final sub-optimal plan for Example 4.9. Nbt the plans of the vehicles
V2 2 andvy 3 might be swapped, which results in the same performance.

In 7.5% of the possible orderings the worst plan with perfamce of 11+ 15is found. In
that case the performance is almost twice as bad as theoaglbapproach, which will al-
ways find the optimal solution to the problem of this examplgithermore, the expected
value of the performance is 6810+ 88/5, which is about a factor/6 worse than the
classical approach. With respect to the worst agent, whighys has performanae+ 4

in the classical approach, we can see thatA in the worst case generates a plan that is
about a factor 3 worse. It can be concluded from this exanmale in some situations, the
classical approach outperforms the multi-agent contextr@ approach. O

This section has shown that there are situations in whicltdiméext-aware routing sig-
nificantly outperforms the classical approach. Howevealsb showed that the opposite
can be true. This means it cannot be said which method is tier lome at the moment.
Extensive experiments are required that test and compatexteaware routing to the
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classical approach. Empirical evidence gathered by thererpnts will be presented in
the next chapter.

In the next section context-aware routing is compared adedlapproaches. The most
important differences are described with two approachaswere already described in
Chaptef 2, which are Hatzack and Nebel (2001)and Kim andhitaouc(1991).

Comparison with related approaches In this section our multi-agent context-
aware routing method is compared to two related reservdased approaches, which
also attempt to solve the routing problem for a fleet of vedscl

The first related approach is Kim and Tanchaco (1991), seo®&t2.4.1| Fuijii et al.
(1989) inspired us with the notion of free time-windows anichkand Tanchoca (1991)
present an algorithm, accompanied by a comprehensivesasiafgr free time-window
routing.

The second related approach is that of Hatzack and NebelY26€e Section 2.2.4.2.
They present a fast algorithm to solve what they call thditrabntrol problem. Their
algorithm is used to route a fleet of airplanes taxiing on tteeigd. Although the algo-
rithm might in practice have turned out to be fast, we detketélaw in the algorithm,
which results in the fact that the computation time of th&goathm is not polynomially
bounded.

Comparing MACA to Kim & Tanchoco In Section 2.2.4]1 the free time-window
graph routing algorithm of Kim and Tanchoco (1991) was pnése: The run-time com-
plexity of their single-agent algorithm §(|R" |*|R"|2), while our single-agent run-time
complexity isO(|R"||[R™|log(|R"||R"|) + |ER||R"[?).

The reason for this difference is that their conflict detatiprocedure is inefficient.
Kim and Tanchoco (1991) did not make use of the fact that incugh to consider only
the direct successor and predecessor to check for catalpiegnflicts (instead, they iter-
ated through all present transport resources).

Furthermore, they used a different framework in which theshthad to check for
conflicts in the locations, as well as on lanes. In our frantekyresented in Chaptef 3,
lanes are also modeled as resources with the same pro@erissations.

Comparing MACA to Hatzack & Nebel In this section a comparison is made be-
tween multi-agent context-aware routing and the approgdiaizack and Nebel (2001)
(see Section 2.2.4.1). The approach of Hatzack and Neb@lj20nsisted of two phases.
In the first phase each agent computes a context-unawarestwath from its current to
its destination location. In the second phase, one by onagéets create a schedule that
does not conflict with schedules other agents created prelyioAt the end, all agents
have a plan and the joint plan is guaranteed to be free of ctsfli
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s123456 .. 3n¢

| Algorithm[Z] [s] | H&N [s] | recursive calls

N n

@ *\ 1 0 0 10

o 2 0 0 26

o 4 0 0 110

= 8 0 1.0 1,682

S 16 0 26 426,026

N 20 0 415 | 6,815,798

- 24 0 696.3 | 109,051,970
10,000 23 - -
20,000 21 - -

Figure 4.11: Difficult instances for Algorithin 2.2 of Hatkeend Nebel. The figure on the
left illustrates how the instances are created, the tabte@®nght gives the time required
to find a plan for different problem sizes and the number of recursive calls used by the
algorithm of Hatzack and Nebel.

Hatzack and Nebel (2001) do not take free time-windows ietmant in their algo-
rithm, obviously not in the first phase, but also not in theosecphase. The importance
of free time-windows is the fact that algorithms can beneggagy from the fact that only
the earliest possible time a free time-window can be viditesl to be considered by an
algorithm. Any computations that visit the same free timadeow at a later time are
superfluous, because one could have used the earlier visjuahwait, resulting in the
same plan costs.

The importance of considering which free time-windows dreaaly visited can be
made clear by looking at the difference in performance (wéspect to CPU cost in
time) between Algorithrh 212 of Hatzack and Nebel and Aldorit4.1 on a special set of
problem instances. This example exploits the fact that thiestacase time complexity of
Algorithm[2.2 of Hatzack and Nebel is not polynomially boedd

Their algorithm makes use of backtracking, and since thepatanake use of the
idea that a free time-window needs to be expanded at most dnsepossible to con-
struct examples in which the algorithm keeps backtrackimgugh the same paths of
time windows.

Figure[4.11 depicts an example where this worst-case bahiaviealized. The fig-
ure illustrates the reservations on the sequence of res®horizontally from source
resourcesviary,rp,rs... to destination resourag); vertically, the progress of time is
shown. Each resource is assumed to have a traversal timdofcteate such an instance
where their algorithm need<'2 1 updates, no more than the following Eeservations
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are needed in aroutg,rq,ro,...,ran,rq of 3n+ 2 resources:
e resourcess_» are reserved durinfpi — 3,51 —2) for 1L <i <n,
e resourcesg are reserved durinfpi — 3,5i) for 1 <i <n,
e resources; are reserved duringpn,5n+ 1) for 1 <i < 3n.

The table shown in Figufie 4.111 clearly shows that if such acsire of reservations oc-
curs Algorithm[2.2 of Hatzack and Nebel will not be able tovealhe instance within
acceptable time, while Algorithin 4.1 has no problem witrsthstances at all.

Another difference to other approaches, such as the cisgiproach, is that our
framework is flexibly due to the separation between infragtire and transport agents.
The next section describes several conflict-resolutiogsrthat can be used by the infras-
tructure agents to prioritize the agents if a conflict occurs

4.2.4 Refined conflict-resolution rules

Our framework presented in Chaptér 3 separates betweaptdragents and infrastruc-
ture agents. The infrastructure agents compute resengdio the transport agents while
ensuring a global situation that is free of conflicts. To dake infrastructure agents must
prioritize agents with conflicting plans. The infrastrugt@gent uses conflict-resolution
rules to determine which agents precedes the others, anatlibe agents have to wait
until it is their turn to access the congested infrastrietesource.

We distinguish betweesimpleand plan-basedconflict-resolution rules. The differ-
ence is that in case agimplerules the priority values are not directly dependent on the
plans of agents, while thelan-basedrules are. Furthermore, one can also distinguish
betweerstaticanddynamicrules (see Table 4.12), where dynamic rules use information
that changes during plan execution, while static rules doAlbplan-based heuristics are
assumed to be dynamic (because the plan of an agent charegas ).

The following are examples of simple rules:

e Randomly assign an entity precedence.
e First-In-First-Out (FIFO): an entity that arrived first tskprecedence.

e Longest queue takes precedence: an entity residing in tigesh waiting queue
takes precedence.

e Longest queue with increment: the same as above, thougrstaxation is taken
into account. It could happen that an agent waits alone foosscoad where other
agents arrive continuously taking precedence. This traffe virtually increments
the queue length with 1 of each queue that is not chosen asrigesdt queue.
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Plan-based N/A Longest plan
Urgent deadline
Decreasing reward
Decreasing reward sum

Simple | Random Longest queue (inc)
First-In-First-Out
Static Dynamic

Table 4.12: Distribution of the resource usage rules ovapk versus plan-based rules
and static versus dynamic rules.

The following rules are plan-based, they take the plansetents into account. Within
the scope of this thesis, it is assumed that all agents areshand benevolent.

e An agent with the longest plan takes precedence.
e An agent with the most urgent deadline takes precedence.

e Each agent can compute the decrease in reward resultingifaesing to wait. An
agent with this maximum decrease takes precedence.

e The previous decrease in reward due to waiting can also benedrfor the queue.
The queue having the maximum decrease takes precedence.

In the next chapter the performance of these conflict-réieoluules are compared to
each other by presenting the results of experiments in wihietconflict-resolution rule
used by the infrastructure agents is varied. The next sed@scribes several ways to
refine themACA algorithm to deal with the arbitrary ordering in which thesats plan,
and to make it more robust to incidents.

4.3 Dealing with uncertainty

Typically, the assumptions made at planning time do notydteld at execution time, ei-
ther due to calibration errors or disturbances. For ingaatunpredictable times, agents
can be slower or faster in executing their actions. Unaatgaefers to both these model-
ing errors and incidents, such as described in Sectionl3.1.4

In principle, incidents do not offer any problem to the cleakapproach described
in Sectior 4.11, since it is assumed that operational coméslution methods should be
sufficient to handle conflicts due to incidents as well.

We know that the multi-agent context-aware routing aldpnitperforms well under
normal circumstances. An important question, howeveret@ry route-planning system
is, how robust it is, i.e., how it behaves in case incidenéstappening. It might be
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Algorithm 4.4 PROCESSNCIDENT method.
1: function PROCESS$NCIDENT(t, e T,re RO<i<1,TeW)
2: Pre: An incident occurred that possibly influences the plan afgport resource
ve R of agentac A.
3 Post: Agenta updates the plaR, for vehicleve R, if needed.
4 if re Rt,vr =vthen
5: R, < VISITING SEQUENCE(t;, COMPUTEVISITINGSEQUENCE(RY))
6
7

end if
: end function

the case that in incident-rich conditions, any work donedaxisg conflicts between the
agents a priori is rendered useless by the occurrence opented failures, and, hence,
the classical approach actually leads to the same agewirpenfice.

Of course, one could add operational conflict resolutioriesys to context-aware
routing systems just to complement them and to remove anfficisrdue to incidents.
But then it easily might turn out that such systems are ndebétan the classical route
planning approach. Therefore, we propose to improve theegtaware routing method
itself to deal with such conflicts, integrating executiome conflict resolution with re-
planning.

This section describes several approaches that increasetthstness of the system in
environments where incidents do occur. First of all, thetragent context-aware routing
described in Section 4.2.2 is adapted. BesideptecESNEWREQUEST method, one
can add therROCES$NCIDENT method, which is used by the agents each time an incident
occurs. Algorithm_ 4.4 presents the function that is calledn incident occurs. The
affected resource € R can either be a transport resource, or an infrastructucaires.

If it is determined that the incident might affect the plantbé agent, the agent will
recompute its plan.

Furthermore, in this section two types of refinements arerdesd. With respect
to the execution stagesimple and plan-based conflict resolution rules are censdl
It might be the case that some rules work better in incidefit-situations, while other
perform better under normal circumstances. These rulddwilested and compared in
experiments in Chaptét 5.

But there are also two revisions of the multi-agent contax&re routing algorithm.
The first is to revise priorities. The plans of the agents werestructed with the assump-
tion that no incident would occur. If an incident does ocdumakes sense to reconsider
the priorities of the agents that are no longer to execuie therent plan due to the inci-
dent(s).

The second revision to the multi-agent context-aware imguailgorithm reconsiders,
besides priorities due to incidents, also the routes chbgehe agents. With the addi-
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tional information about the incident that occurred, anmagaght prefer to take a detour.
The MACA-RR method considers alternative routes while replanning tieipes. An
important property of this method is that the spread of agewer the infrastructure after
an incident occurs is improved with respect to the other ouith

In the next chapter, experiments are presented that willaied compare the rules
listed in this section. Empirical evidence will show whicheas perform best under normal
circumstances, and which perform best in incident-richdétons.

The next section describes tacA-RP method, which reconsiders priorities each
time new information, such as incidents, becomes available

4.3.1 Revising priorities (MACA -RP)

In the previous approaches, if agents accepted new tramasiparrequests and changed
their reservations accordingly, these reservations wemnanent. Other agents planned
around these reservations. It was already noted that wishaipproach the welfare of
the system depends on the order in which the agents createsberations for their
transportation plans. The performance can be improved @gnsedering the potential
conflicts.

Due to the arbitrary order in which the agents created théial transportation plans,
unlucky choices might have been made. Hssenc®f the MACA-RP method is to at-
tempt to improve the performance of the agents by re-evalyiétte resource usage rules
now that more (or even less) transportation requests aignastto the agents.

Regularly, the agents can request to revise prioritiess ¢én be started, for instance,
when an agent has accepted a new transportation requeaspartation request has
been modified, or when an agent is bothered by an incidentsguath. Algorithni4.b
can be used to revise the priorities. Typically, the groupgents that revise priorities is
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Algorithm 4.5 MACA-RP.
1: function MACA-RP(v e R ase A,be N)

2 Pre: Vehiclev, part of the set of rescheduling vehiclR& = R", reschedules in
blocks of sizeb

3: Post: Vehiclev has an up-to-date schedule

4: ADDTOGROUR(as, V)

5: Sd, < null

6:  while |Sd/| < |Rt,| do

7 Compute provisional scheduB|, for indexi to the end
8: Compute selection valug = h(R,)

o: winner — HASHIGHESTPRIORITY (as, W)
10: if winnerthen
11 i < RESERVEBLOCK (V,RY,,Sd,, Sd,,i,i +b)
12: end if

13: end while
14: LEAVE GROUR &g, V)
15: end function

formed by the agent that requested the rescheduling tagettieall agents that share at
least one infrastructure resource with the requestingtadéms set of agents can quickly
be determined by looking at the reservations of agents irtfiastructure resources in
the plan of the requesting agent.

To coordinate the group of rescheduling agents, the alganthakes use of a schedul-
ing agentsy € A. This can just be one of the agents within the group, or a apset of
agents for the purpose of rescheduling that can be trustedl the agents. There can be
more than one of these scheduling agents and each schedgéngycould take care, for
example, for a certain geographical area.

If the request to revise priorities is granted by a schedadents,, all of the partic-
ipating agents throw away their schedule, but maintairr tfoeite. Iteratively, an agent
is selected to recompute a part of its schedule. This sefecti done using the agent
selection heuristic. A voting round is needed to determimewinner. This agent now
recomputes a part of its schedule, as determined by therasblock size parameter.
Then, Algorithni4.b moves on to the next iteration, wherertiyet agent is being selected
to recompute part of its schedule. The algorithm terminatesn each agent in the group
has a new and complete schedule.

Line[d adds transport resourge R' to the rescheduling group administered by the
scheduling agerds € A. Subsequently, vehiclethrows away its schedulgd, and enters
a loop, which only terminates when its agent has re-compatesimplete schedule. In
Line[d an interim schedul8d, is computed, which would be the optimal schedule if there
would be no interference with other agents. Of course, tiexim schedule has to take
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Figure 4.14: This example
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into account loading and unloading actions as specifiedermptanR, of vehiclev. In
Line[8 the agent selection heuristig = h(R,) computes the priority value for vehicle
v. The agents call theASHIGHESTPRIORITY function, which only returns true for the
agent with maximum valug, = max,crr V. In Line[11, theRESERVEBLOCK method
creates reservations for the vehicle with the highest gyjorvhich it already computed
in the provisional schedul8d,. It creates reservations for the néxtesources in its plan,
but also for some more resources, because even temporay ghauld always end in
a resource with sufficient capacity. If this would not be tlase; it cannot be ensured
that the agent can find a feasible plan for the rest of its giomal schedule without
changing prior reservations. Finally, theave GRouP function removes the agent from
the rescheduling group.

The next section goes one step further. Besides reconsideriorities of the agent,
the MACA-RR method allows agents to traverse an alternative route asnfewnation
about incidents arrives.

4.3.2 Revising routesNIACA -RR)

In the previous methods the routes of an agent were only neddifi case a new trans-
portation request was assigned to the agent, or when areimaiendered the route of the
agent infeasible.

A natural improvement to revising priorities, is to revigeites as well. The advan-
tage of thewvAcA-RR method oveMACA-RPis that it is expected to have a higher perfor-
mance. Disadvantage is that, due to consideration of aligenroutes, the computation
costs (in CPU time) are also higher. The next chapter presecbmparison between
these methods based on empirical data gathered with exg@sm

Algorithm[4.5 can be extended to include consideration taraative routes during
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Algorithm 4.6 MACA-RR.
1: function MACA-RR(V e R ase A,be N)

2: Pre: Vehiclev, part of the set of rerouting vehicles R, reschedules in blocks
of sizeb
3: Post: Vehiclev has an up-to-date schedule
4: ADDTOGROUR(as, V)
5: Vs < Visiting sequence of resources in which load and/or unlatidiss take place
6: (Rt;, SdV < null
7: while vs # @ do
8: Compute provisional pla(Rt,, Sd,) for visiting the resources in
9: Compute selection valug = h(R,)
10: winner — HASHIGHESTPRIORITY (as, W)
11: if winnerthen
12: i < RESERVEBLOCK (V,Rt,,Sd,,Rt,,Sd,,i,i + b)
13: end if

14: end while
15: LEAVE GROUR ag, V)
16: end function

the replanning. In Algorithmi 416, instead of computing ayisinal schedulesd,, a
provisional routeRt, as well as a schedulgd, is computed. The routRt, must visit all
loading and or unloading resources as specified in the aligianR,, in the same order
as before. Hence, there are no changes to the order in whednahsportation requests
are executed.

Algorithm [4.6 shows the pseudo-code for thecA-RR algorithm. In Line[b the
visiting sequence is constructed. This sequence conthiresaurces in plam, in which
a loading and/or unload action takes place. The sequendaigsrthese resources in
the same order in which they occur in plRp Subsequently, not only the schedule, but
also the route contained in pld® is thrown away by the agent. Similar to tlaCA -
RP algorithm the plan for vehicle is then re-computed. In Ling 8, besides an interim
scheduleSd,, also a routeRt, is computed, which might very well be different from the
original routeRY{,.

4.3.3 Properties of the refined methods

Section 4.23 describes that the multi-agent context-@awauting algorithm always re-
sults in a Nash Equilibrium, which is considered a crucialgarty.

For both thewAcA-RP as well as for thavACA-RR method, after a finite number of
replannings due to transportation requests and incideetsetmethods also result in a
Nash Equilibrium (as always assuming that execution willagoording to plan for all
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agents).

Furthermore, if this process turns out to be too slow, fomgple if there are many
incidents in a short period of time, it is possible to skip acpatage of replannings and
rely on the operational conflict resolution rules — or alénrely to only replan the first
several locations to visit of the current transportaticanplTheMACA -RP andMACA -RR
methods can be used asytimeor interruptible methods, which continuously attempt to
improve the performance even during the execution of thesprartation plans.

4.4 Summary

In this chapter a new single-agent context-aware soursgragion algorithm (SACA) is
introduced. The best known result of Kim and Tanchoco (19@&)run-time complexity
O(|R"|*-|R"2). By a careful analysis of this approach, we succeeded inriag¢he
run-time complexity taO(|F |log(|F|) +|p|) or O(|R"||R"log(|R"||R™) + |ER||R"|),
making it much more scalable.

Subsequently we presented a multi-agent context-awarengomethod (ACA)
based on thesACA algorithm. MACA guarantees that, if execution goes exactly accord-
ing to plan, deadlocks do not occur. Furthermore, if all agerse the context-aware
approach the end result is a Nash equilibrium — no agentswegrove by changing their
plan (without other agents making changes).

By solving conflicts already in the planning stage\CA improves the predictability
of travel times. For many realistic environments, howeites, also required to consider
uncertainty. This is why the framework presented in ChdBteontains incidents, which
model malfunctioning transport and infrastructure resesr

The second part of this chapter refines thwecA with respect to incidents. To im-
prove the plan quality in incident-rich environments psiimt the planning process where
agents are in conflict are reconsidered to improve on eadiettions (with now more in-
formation available). This is what theacA -RP method is for. Subsequently, this method
is further improved by allowing the agent to change the rotieexecute their requests —
theMACA-RR method.

Sectio 4.2.3 compared the context-aware routing appruettte classical approach
and showed that both positive examples, where the conteattearouting approach out-
performs the classical approach, as well as negative exsnegist. Besides that, there is
another possible drawback; the improved algorithms dowmesmore CPU time. So, the
question is whether the increased plan quality is worth tligtmnal cost in CPU time. In
the next chapter experiments and the obtained empiricaltsesill be described to test
and compare the transport planning methods presentedsinhbpter.
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In the previous chapter several operational planning nisthave been described for op-
erational pickup and delivery transportation planningmimne-windows. The introduced
methods attempt to improve the performance of the agentgkhasithe robustness of the
plans. On the one hand, methods were presented that tak&atieqs other agents into
account in order to have better knowledge about the planuioecalready at planning
time. On the other hand, methods were introduced that hatterkmpabilities to deal
with incidents.

In Sectiori 4.2.13 the multi-agent context-awava€A) routing was compared to clas-
sical routing by considering examples. It was shown thah Isituations whera1ACA
outperformed classical routing as the other way aroundsexis this chapter the two
will be tested and compared more thoroughly with experimerthe experiments are
also needed to discover the effect of the other methods tee¢ described, such as the
MACA-RP andMACA -RR methods.

This chapter reports the outcomes of our experiments., leingpirical results are pre-
sented about the gain in performance byntaecA approach as compared to theassi-
CAL approach. Second, the influence of the different conflisbitgion rules, which are
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used by the infrastructure agent to prioritize agents, terd@ned empirically. Finally,
experiments are described in which the incident level imees. This will show whether
theMACA approach is also to be preferred in situations where intsdém occur.

A single experiment is defined by specifying the availald@s$port resources, trans-
portation requests, transport network topology and intidievel. The experiments are
divided into two sets(i) general experiments using a collection of synthetic prolle
stances referred to as thest setand(ii) a realistic setting with airplanes taxiing on the
Schiphol airport network.

The general experiments do not focus on a particular reablpplication. Instead,
the transport network topology, the set of transportatiequests, the set of transport
resources, the behavior of the agents, and the incidentdesevaried in order to study
the effect of this factor on the system performance. Thesthsyic instances are needed,
because we need to control many parameters.

The behavior of the agents is defined by the various plannettyods described in the
previous chapter. The experiments attempt to establiatioak between the performance
of the planning methods under these varying circumstandese have been other, sim-
ilar, empirical validations, such as the benchmarks pteseim Chaptef]2 of Taillard,
Golden, and Van Breedam (The VRP Web, 2007), as well as the-Erale vehicle rout-
ing problem benchmark by Li, Golden, and Wasil (2005). Thasechmarks, however,
are for variants of the Vehicle Routing Problem that abstiiaen the routing problem.
The distance between each pair of customers is simply lookeid a distance matrix.
No capacities of locations, or the congestion that resubis fthese capacities, are con-
sidered. Furthermore, these benchmarks compare the paice of different planning
methods, but do not follow systemati@pproach to discover potential relations between
the performance of the planning methods and influentialrenmental or infrastructural
factors.

The other set of experiments in this chapter consider thentpof airplanes at
Schiphol airport in the Netherlands. In current practic&ettiphol, airplanes follow a
fixed route from runway to gate and vice versa. These expeisrshow the benefit of
having the airplanes choose alternative routes at any poiime themselves. This fixed-
path assumption is not particular to Schiphol airport, &lso common practice at, e.g.,
Frankfurt airport ((Triig et ali, 2004), the fixed-routes asgtion by Hatzack and Nebel
(2001), or in bus line domains (Hickman and Blume, 2000).

5.1 Expectations

It is expected that th®ACA approach results in statistically significantly betterfper
mance than theLASSICAL approach, because all alternative routes that agents kan ta
are considered, while using tkeASSICAL approach some infrastructure resources might
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be overused. Because thader in which the agents plan is arbitrary, and thecA-RP
and MACA-RR methods revise the potential conflicts, we expect those timme even
better. Most is expected of the latter methedCA -RR, which also considers alternative
routes for the transport resources while reconsideringritigs in case of conflicts. The
gain in performance comes at a price, we expect that the g¢fehthe performance of the
methods, the higher also the CPU time required to computirtalransportation plans.

With respect to theonflict-resolution ruleslescribed in Sectidn 4.2.4, we expect the
plan-based rules to outperform the simple rules. This makese, because the perfor-
mance of the transport agents depends on their final plansevs, the first-in-first-out
rule to prioritize vehicles accessing a resource has alrpaaven itself in many domains.

We expect the transport netwotdpologyto have a significant influence as well. An
important factor here is the average number of alternatipproximately equi-distant)
routes between the source and destination locations. The aiternative routes, the
better the context-aware methods can spread the trafficaksadthe less sensitive to
incidents because the agents can avoid infrastructuranesoaffected by incidents. The
negative influence of the arbitrary order in which agents plall also be smaller on
networks with many alternative route choices.

Finally, we will see the effect of incidents on the differggianning methods. We
expect that the context-aware methods still outperformcibessicAL approach if the
incident level increases. The strengthvofCA -RR to select alternative routes will prove
most useful in incident-rich circumstances. The next saatiescribes the experimental
set-up, after which the results of the experiments will becdbed.

5.2 Experimental set-up

For the general experiments a synthetic set of problemnusta referred to as thest set
has been used to obtain empirical data. As a starting pairg,xa8-grid network is used
in which 32 transport resources are traveling around. Tdresportation request load is
192 reques@s Sequential Vickrey auctions (Vickrey, 1961; SandholmQ=)9determine
the task assignment and then the task execution by the td@ngsources can begin.
The outcome of the auctioning process already depends guiaheing methods that the
agents use, because these are used to compute the bid waleasti transport request by
the agents. Using this as a starting point, several partdwiVaried, referred to as the
independent variables.

The agents are forced to do their best to execute all trategpor requests assigned
to them; that is, even without any reward they will make thetdor traversing to the

1The number 192 is twice the minimal request load, viz., tvatdnces were merged together. For more
details on the generation of the test set, see Appénhdix I.
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pick-up and delivery location, unless they are unable toaldwe to, e.g., deadlocks or
incidents.

The role of information in our experiments is measured bydheice of planning
method; some planning methods use different informatiam tthers. This is how the
information that is available to the agents in the experitmenmanipulated.

Independent variables Theindependent variable®@r experimental variables) are the
planning method, the request load, the incident level, ites and topology of the trans-
port network, and the number of transport resources. Theplg methods, which can all
be found in the previous chapter, are divided into 5 categofi) the classical approach,
(i) multi-agent context-awar@i@CcA) planning,(iii) revising priorities fACA-RP), and
(iv) revising routeSNMIACA -RR).

Therequest loads simply measured by the number of transportation reqissised
in parallel at the beginning). It can be more accurate to tateeaccount the minimum
distance from source to destination, as well as the spetifredwindows. However, that
is still an approximation as it, e.g., does not take into aotohe initial locations of the
transport resourc@s

An alternative approach would be to defineeguest ratanstead of a request load.
If using a request rate (a set of transportation requestsirperunit), one can postpone
doing any measurements during the first few bursts of regusprevent including the
cold start (all agents starting from their home locatioms)ich in this thesis is included
in the measurements. However, a small experiment showediniod influence the results
much, due to the fact that all different planning method$esudfom the same cold start
and that the effect is small because it is averaged over &tiloreg

Theincident levelis not simply measured by counting the number of incidents. F
each incidentr,i, 1) € Z, affecting infrastructure or transport resource R" U R, the
impact 0< i < 1, and the duratiomb(7) — Ib(7) are also considered. The following is
used to measure the incident level:

incident level = )" i+ (ub(t) —Ib(T)).

(ri,T)eZ

Three differennetwork topologiesvere used in the experiments, which éjegandom
networks,(ii) small-world networks, andiii) grid networks, all with 64 infrastructure
resources and 128 arcs.

2For the scope of our experiments just counting the numberapfsportation requests per time unit
sufficed.
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Dependent variables The dependent variablefr performance indicators) computed
for the experiments are the percentage of successfullyuee@dransportation requests,
the average tardiness of all transportation requestsystera welfare, and the CPU cost
(in time) required to finish the particular simulation.

The network utilization is the usage of the infrastruct@saurces by the agents. The
agent utilization is the amount of time that agents are inreidte state (i.e., they are load-
ing, unloading, waiting or driving). To define the networliaation, ranging between 0
and 1, the infrastructure resources are divided into twpitiissets: the resources with
sufficient capacity to hold all ager®R8s = {r e R"": k"(r) > |A|} and the other resources
R"Ps— RM\RPS, The set ofparking spacaesourcesRPs is ignored while computing the
network utilization. Recall that the route of an ag&®¥ = (ra1,ra2,...,ran,) iS a se-
quence of infrastructure resources, its sche@gde= (ty1,ta2,...,tan,) @ Sequence of
times at which theses resources are entered and reses/@ionc A x W is a set of
agent time-window pairs representing the reservationssource (Sectiorf 3.3.2).

agent utilizatiorua = maxt,
teSd;l

e to—t

network utilizationUy = 2 2 2-1

R o taean) 1 e

Z n] ( ] ) de)
s ~d

{j:0je0} (T TJ )

CPU costintimay = computation time of a complete experiment.

plan quality (relative reward)

The definition of performance is the relative system reward, i.e., the achieved reward
for all transportation requests divided by reward that widwdve been obtained if all re-
quests would have been processed within the specified parkdigelivery time-windows.
The relative system performance is just one of the many blessystem performance in-
dicators, which is used as a default in this chapter.

The CPU cost in terms of timg is the measured amount of time that the computer
program used to execute the experiment, from the begin tertieand including every-
thing. The machine on which the experiments were perfornuedantees that it dedicates
all processor time to the experlm&ts\n alternative approach would be to measure only
the algorithmic time, instead of the full time of the expeeimb from start to end, for CPU
costg. However, as can be seen from the enormous speed (low CP)bttst CLASSI-

CcAL method, which is used on exactly the same problem instatiasglid not influence

3Note that no other applications can interfere and increase€PU costp of an experiment. Besides
that the operating system measures the percentage of CR$ gywen to the program, such that one could
also correct in case other processes would be running simedusly.
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the experiments in this thesis.

For the lowest request load of 96 requests, it is possiblaito e maximum reward
for each request, due to the way the test set is constHJciémr higher request loads,
however, this is not possible. Transportation requestsudfipte problem instances are
merged together to form more challenging problem instgnoaisthese requests are to
be executed by the same set of transport resources. Heaeaattimum possible reward
can usually not be reached because of the increased reqaéssdme network, and same
set of transport resources.

All results presented have been obtained by making use éfahsport planning sim-
ulatorTRAPLAS, see AppendiXE. A free software environment for statiftoanputing
and graphics called R (R Development Core Team, 2007) hasusssl to combine the
output of TRAPLAS, to plot the graphs and for all further data analysis. Allexments
were done on the Distributed ASCI Supercomputer (DAS-3Fsgere[E.2).

5.3 General experiments

This section describes the results of the general expetsweith synthetic problem in-
stances. First, Section 5.8.1 tests and comparesithssiCAL approach to themAcA
and its variants under normal circumstances. Second, iticB&g.3.2 the results of ex-
perimenting with the different conflict-resolution rules the infrastructure agents are
presented. Finally, Section 5.8.3 presents empiricalliesu the performance of the
different transportation planning methods in case thezeranidents.

After the general experiments Section]|5.4 describes axgaitis on a real-life trans-
port network (the Schiphol airport network) which demoatgs that the context-aware
methods are usable on real-life networks as opposed tossyeteproblem instances.

5.3.1 Classical versus context-aware variants

Consider the situation where the request load is 192 tratedppn requests. There are
no incidents and the network topology has a grid structuigure[5.1 shows a box-and-
whisker plot (Tukey| 1977) for 4 different planning-methcategories. The plots are
based on 100 samples (10 simulations and 10 different sétarsportation requests). If
the notches of two box-and-whisker plots do not overlap i&rong evidence that the
two medians statistically differ (Chambers etal., 1983)g62).

A relative reward of 1 means that the maximum possible revgothtained for all of
the transportation requests, as determined by the rewaatidun 7 (77, TJ@') € R for each
requestoj € O, whereT} e W and Tf' € W are the executed pick-up and delivery time-

“More about how the test set is constructed can be found in AgipE
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Figure 5.1: Role of information. With one exception, all mads execute all transporta-
tion requests. TheLAssICAL method, however, executes only 48.5% on average. The
'+’ symbol indicates the means and the Symbol is used for outliers.

Planning CLASSICAL MACA-RP MACA MACA-RR
method
CLASSICAL 0.000 -0.487 -0.528 -0.538
MACA-RP 0.487 0.000 -0.041 -0.051
MACA 0.528 0.041 0.000 -0.010
MACA-RR 0.538 0.051 0.010 0.000

Table 5.2: Tukey Honest Significant Differences table ferglanning-method categories.
The value of each cell is the difference in performance méahseen the two planning
methods. The cell is highlighted if this difference is nadtistically significant (i.e.,
p > 0.05). The planning methods are ordered by increasing aveef@@mance (relative
reward).

windows respectively. This maximum reward cannot alwayadigeved, especially not
if the request load or the incident level increases, or ifrthmber of transport resources
decreases.

ANOVA shows that the null hypothesis that the means of alhpiag-method cat-
egories in Figur@ 511 are equal has to be rejected; therelémsit one that significantly
differs from the others. In such a case the post hoc TukeyH®Dgstly significant differ-
ence, See Miller (1991)) test provides more informatiore ¢brresponding TukeyHSD is
presented in Table 5.2 and provides a pair-wise comparistween all planning-method
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categories. In this table, the planning-method categ@ressorted in increasing dif-
ference in mean, which is why the gray cells, indicating tifeeence in mean is not
statistically significant, are along the diagonal.

It can be concluded that theacA method has been underestimated in the expecta-
tions. Its performance is actually in between tieCA-RP andMACA -RR methods. The
expectations about the CPU time costs were correct (seegthteptot in Figure[5.11), it
can be seen the CPU cost (in time) required by the planninpadstincreases if more
information is considered by the planning methods.

As opposed to thamacA methods, thecLASSICAL method is not able to execute
all transportation requests. This is due to deadlocks tbairowithout any coordination
between the agents. On average, theassiCAL method executed 48.5% of the trans-
portation requests.

That the performance, the relative system reward, dependieochosen planning
method and nothing else, can be shown by considering thelaban coefficient. The
correlation coefficient between performance and planning method in Figure 5.1gusin
the modelu = Bo + 1M, is 0.99. This means that 97% of the total variance in perfor-
mance is under experimental control (is due to the choicéamiiing method).

The right plot in Figuré 5]1 shows the sole strength of¢hessicaL method, it is
the cheapest in terms of CPU cost. Although this might be amarstdge for very large
transportation instances, thie\CA method is usually fast enough for practical instances.

In Figurel5.38, theeLASSICAL approach is given a second chance at problem instances
with higher request loads. It might turn out that it is theyomlethod that can still oper-
ate on large problem instances. However, the figure cleidys that thecLASSICAL
planning does not work well at all. This bad performance ie tuthe occurrence of
deadlocks. Of course, due to the fact that only few trangpiort requests are executed
successfully, the relative reward of the agents is closesto as well. It is clear that,
for an agent, the plans of the other agents play an importdatand must be taken into
account to avoid deadlocks. Without incidents, and withrésgriction that agents always
drive to a resource with sufficient capacity at the end ofrtpkein, it can easily be proven
that deadlocks cannot occur with neither thecA method, nor withMACA -RP, nor with
MACA-RR.

It can be concluded that agents must consider the plans ef agents while creating
their transportation plans. Theaca method performed better than was expected, but
the best performing method is still theaCA-RR method. Furthermore, th@eACA-RR
method is also the most expensive in terms of CPU costs.
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Figure 5.3: The percentage of executed transportatiorestgwithCLASSICAL planning
on grid networks.

rule description
random for baseline comparison, chooses a random agent to go first.
delays agent with highest sum of expected delays goes first.

deadlines| agent with lowest vaIuéKA—o‘“’ goes first, wheré— @, is the amount of
time until the deadline anlll, is the expected time required to execute
the request, for all requestss O, assigned to the agent.

profits agent with lowest expected profits goes first.
wait agent that waits longest to enter its current location goss fi
task agent that is assigned the task that has the highest rewasdfigst.

invtask | the reversed ordering of the task heuristic, used to sedftéat of bad
versus good heuristics.

Table 5.4: List of conflict-resolution rules used by thecA -RP andMACA-RR methods.
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Planning RP RP RP DEAD- | RPINV RP RP RP WAIT
method DELAYS | PROFITS | LINES TASK | RANDOM| TASK

RP DELAYS 0.000 | -0.007 -0.018 -0.019 | -0.020 | -0.024 | -0.051
RP PROFITS 0.007 0.000 -0.012 -0.013 | -0.013 | -0.017 | -0.044
RP DEADLINES 0.018 0.012 0.000 -0.001 | -0.002 | -0.006 | -0.033
RP INV TASK 0.019 0.013 0.001 0.000 | -0.001 | -0.005 | -0.032
RP RANDOM 0.020 0.013 0.002 0.001 0.000 | -0.004 | -0.031
RP TASK 0.024 0.017 0.006 0.005 0.004 | 0.000 | -0.027
RP WAIT 0.051 0.044 0.033 0.032 0.031 | 0.027 | 0.000

Table 5.7: Tukey Honest Significant Differences table fa MaCA-RP methods. The
value of each cell is the difference in performance meangdst the two planning meth-
ods.

Planning RR INV RR RR RR RR DEAD- RR RR

method TASK PROFITS | DELAYS | RANDOM| LINES TASK WAIT

RR INV TASK 0.000 | -0.003 | -0.012 | -0.013 -0.013 | -0.013 | -0.026
RR PROFITS 0.003 0.000 | -0.009 | -0.010 -0.010 | -0.011 | -0.023
RR DELAYS 0.012 0.009 0.000 | -0.001 -0.001 | -0.002 | -0.014
RR RANDOM 0.013 0.010 0.001 0.000 0.000 -0.001 | -0.013
RR DEADLINES 0.013 0.010 0.001 0.000 0.000 -0.001 | -0.013
RR TASK 0.013 0.011 0.002 0.001 0.001 0.000 | -0.013
RR WAIT 0.026 0.023 0.014 0.013 0.013 0.013 | 0.000

Table 5.8: Tukey Honest Significant Differences table f@ MACA-RR methods. The
value of each cell is the difference in performance meangdet the two planning meth-
ods.

5.3.2 Conflict-resolution rules

Figured 5.6 (fomacA-rRP) and[5.6 (formACA-RR) show box-and-whisker plots for the
different conflict-resolution rules listed in Talile 5.4. eNhait rule, which considers the
amount of time a vehicle has already been waiting to deteFitsrpriority, works best in
both MACA variants. Interestingly, this conflict-resolution rulsalis among the fastest
with respect to the consumed CPU time.

Tables 5.7 and 5.8 display the TukeyHSDs for thwcA-RP and MACA-RR meth-
ods respectively. Th&ACA-RR method using thevait heuristic results in the highest
performance on grid networks with relatively small requeati and no incidents.

The good performance of thveait heuristic can be understood by appreciating the in-
tuitive resemblance with the first-come-first-served ratir{Kruse, 1984), which works
so well in scheduling. Thevait heuristic aims to minimize the waiting time of transport
resources, by giving priority to the longest waiting tramgpesource. Hence, theait
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Figure 5.9: The main effect of varying the request load od gatworks.

heuristic attempts to increase the throughput of trangport requests, which increases
the performance of the agents.

In Figure[5.9 the results are shown for increasing request [®he performance along
the vertical axis is the sum of the rewards of all agents.ft&aseen that the performance
of all agents increases up to almost 300 transportatiorestguThe agents have time left,
so they can increase the total reward by the arrival of amlthli transportation requests.
There is a point at which the total reward stops growing, Wiiiappens to be at almost
300 transportation requests. This was expected becaustvadrk saturation. Figuife 5.9
also shows that the network utilisation does still grow be/800 transportation requests,
but not as much as below 300 requests. Beyond 300 requestdrdh in total reward
Is due to the fact that agents are enforced to execute (thstesimply drop) requests
assigned to them, and this has a negative effect on theiequbat transportation requests.

Later, in Figure 5.10, it can be seen that tekative rewardperformance decreases
right from the beginning when the request load is increasiings is because the relative
reward is computed relative to an upper bound on the rewdrd.upper bound assumes
all transportation requests are executed within the spédiime-windows, which cannot
be reached by the agents and the difference increases withuthber of transportation
requests.
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Figure 5.10: The relative reward for theacA-RP method with different heuristics on
grid networks.

5.3.2.1 MACA-RP

Figure[5.10 depicts the performance difference of the agsiaf theMACA -RP method.
TheMmAcA method is presented for comparison, and the other methtidsidithe heuris-
tic used to prioritize the agents during the rescheduling@ss.

The wait heuristic again outperforms the others (statisticallyngigant) when look-
ing at the average relative reward. In fact, it is the onlydueuristic that significantly
outperforms therACA approach.

The network utilisation grows along with the request loatllatmost 50% utilization.

It can be seen that the speed at which the network utilizafiows decreases and at the
same time the performance decreases slower.

The CPU cost (in time) depicted in Figure 5.11 shows thattheA planning method
can be used for realistically-sized applications. FomheA-RP methods it will depend.
If there is enough time, it is worth it (due to the improvedmptpuality). However, if speed
is very crucial and there is few time available, thecA method might be a better choice.

Figured5.11 also reveals that the CPU cost required to doaaiion run also depends
on the choice of heuristic. Generally, heuristics that leabtetter performance in plan
quality seem to be faster with regard to simulation speededls Whis can be understood
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Stdev

96

by recognizing that heuristics that make good choices abith agent should create
reservations first result in fewer conflicts that have to bleesblater on. Hence, the
remaining process can be done in less time.

Except for theuacA method, which is just a ot faster, tive\CA -RP method using the
wait heuristic must be mentioned again as being the best methisdjrhe with respect
to the consumed CPU costs.

5.3.2.2 MACA-RR

Figure[5.12 shows thatACA-RR with thewait heuristic results in a slightly higher rel-
ative reward (yet statistically significant) than t1iecA-rp andMACA methods. At the
same time, as shown in Figure 5.13, CPU cost (in time) is hifgrehe MACA -RR vari-
ants. Again, with respect to the CPU costs, the choice ofistaurs important and the
wait heuristic is cheaper than the other heuristics in terms &f Cé5ts.

Figure[5.18 shows that instances with less than, say, 200ests| can be solved
quickly. Afterwards the required CPU time grows rapidlypesially with approximately
350 transportation requests. The reason why the CPU castirent reduces beyond this
point is that the transport network becomes congested amut®@gre just going to take
much longer to execute the requests. As can be seen in thergnaxiing experiments
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Model M3: 1T= [y + B1W.
Model M2: 1T = o+ BiW + oM.
Model M1: 1T = o+ B1W + oM + LW M.

Model Res.Df RSS Df SumofSq F Pr(>F) R?
3 12094 109.0 0.81
2 12074 31.3 20 7.7 41585 <2.2e-16 0.94
1 12054 113 20 20.0 1071.1 <2.2e-16 0.98

Table 5.14: General linear test: comparison of the full nh@ael two reduced models.
Variable T refers to the relative reward over all transportation retgigV to the request
load andM the planning method.

later in this thesis (Sectidn 5.4), it is possible that, whdding a lot more transportation
requests, the growth in CPU cost will increase again at soon&,pand oscillates like
this. The question whethefACA-RR methods are to be preferred owescA-rRP meth-
ods again depends very much on the problem at hand, mostiyrespect to the time
available to the planning agents. A general conclusion banaot easily be made.

5.3.2.3 Evaluation of the chosen planning method and requekad

Looking at the plots of Figure 5.8, 5]10 ahd 5.12, which shbe performance of the
planning methods while increasing the request load, it sebmslopes and intercepts are
not equal for all different planning methods. Analysis ofaoance can show whether
these differences are indeed statistically significane fdguest load here is used as the
covariate.

Three different models are computed. The first is the full edddll, which takes into
account the planning method, the request load and thenartien. In the first reduced
model M2 the interaction effect is ignored, and a secondadedmodel M3 also lacks the
planning method. If model M2 differs statistically signditt from model M3, this means
the planning method is required to model the performancenddiel M1 in turn differs
statistically significant from model M2, this means alsoittteraction effect between the
planning method and the request load adds to the accurabg afiodel.

For the full model it is verified that the error has a normalrtisition and that the
variance is the same for all data (homoscedasticity). Tegteof the general linear test,
which is used to compare the three models to each other,esemted in Table 5.14. Also
included is the explained variangg.

The full model M1 is the best model according to Tdble b.14,slope and intercept
are statistically significantly different. Three modelsrevéested: model M1 stating that
both the slopes and intercepts are different for at leasbbtiee planning methods. Model
M2 stating that the intercepts differ, but the slopes arthalsame. And model M3 stating
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Figure 5.15: The relative reward (averaged over all regldst a selection of planning
methods on grid networks; the incident level is increasimg) the request load is fixed to
192 requests.

that all slopes and intercepts are the same. Consideringd™sR?, which indicates the
explained variance in the model, it must be noted the diffezeof 4% between model M1
and M2 should not be overestimated. The interaction effet&en planning method and
request load does not add much.

If the request load increases, the differences betweendina@ipg methods increases
as well. Thewait heuristic results in the best planning method. ¥aeA-RP method is
preferred, as it performs equalMACA-RR, but is also faster.

5.3.3 Incidents

In this section experiments are described that show whatggsawith respect to the role
of information in operational transport planning if the ichent level increases. First,
the effect of increasing incident level on the performanté¢he planning methods is
investigated. Later, the combination of various requesti$oas well as various incident
levels is considered.

Figurel5.15 and5.16 shows that the two methods that wergisupe far, i.e. MACA -
RP andMACA-RR with thewait heuristic, are also the best performers if the incidentlleve



124 Operational Transport Planning in a Multi-Agent Sejftin

Topology: grid
o
o |~ MACA S lzr/ﬂ
~ RP wait w0 /
--+--  RRwait L 4 .
£
| 58|
E 8 /Jif—’F * -
o 3 P
& 0 E 4 7
2 e o
£ + + + 8 |
s | S
) —
% T T T T T T T
4 0 100000 250000
Q4 Incident level
ol OT——— —f—8—8—&8———8
0 50000 " 150000 250000

Incident level

Stdev

123407 169839 217646 262517 323981

Figure 5.16: The CPU costs (in time) required by the selaatioplanning methods on
grid networks; the incident level is increasing and the esfjload is fixed to 192 requests.

increases. The reason for this is that all methods degrapex@dmately equal if the
incident level is increased. Apart from the small differerietween RR-wait and RP-
wait, the difference in performance of all runs with incitkeis statistically significant.

Attempts to create methods that degrade less if the incldeekincreases, should, if
possible, adopt a different approach. One such possikslity insert slack into the plans
of the agents, which is described in the following section.

5.3.3.1 Slack insertion

One idea to try to improve the robustness of the plans of tkatags to introduce slack
into the plans of the agents. Slack is additional waitinggtithat slows the agent down if
no incidents occur, but might improve the situation in cadsa@dents. For a low incident

level, agents might not even have to replan, because theyustgubtract the effect of
the incident from their slack and proceed as they would hatreowt incidents. Inserting

slack is realized by having agents multiply the distanceacheesource by 1.1 or 1.2 (for
10% and 20% slack respectively) if no incidents are knownanlfincident occurs, the
slack is decreased likewise (sometimes removed comp)etely

Obviously, if every action of the agents goes exactly adogrtb plan, then inserting
slack only decreases the performance. However, the iddaak mserting is especially
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meant for situations when incidents @&gectedo occur. The intention of slack insertion
is that, even if agents are somewhat delayed, they canratitltwithin the time-window
of the reservation they made and arrive at their next lonatidime. Inserting slack is
an attempt to achieve graceful degradation of the perfocmanfhthe agents in situations
where the incident level increases.

In Figure[5.1V, themAaCcA-RP and MACA-RR methods are used, both with thait
heuristic. To both of these methods first 10%, then 20%, stagked for each reservation
(i.e., each location they visit) the agents make.

The figure shows a negative result. The relative reward oagsmts only gets worse
if 10% or 20% slack is used compared to the situation wherdauk $s used. There is
no turning point beyond which it is profitable to insert sortexk the plans. The reason
for this is that themACA-RP and MACA-RR method already have the agents resched-
ule if an incident occurs. But since other experiments diyeshowed that these are
our best-performing methods, inserting slack cannot tésuwhore reliable plans for the
transportation planning problem that is central in thistbe
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Model M6: u = o+ Sal.
Model M5: i = o + Bil + BM.
Model M4: u = By + f1l + oM + B3IM.

Model Res.Df RSS Df SumofSq F Pr(>F) R?
6 11628 96.5 0.74
5 11609 77.6 19 19.0 180.5 <2.2e-16 0.79
4 11590 64.1 19 134 1279 <2.2e-16 0.83

Table 5.18: General linear test: comparison of the full nh@ael two reduced models.
Variable u refers to the relative reward over all transportation ratgié to the incident
level, andM the planning method.

5.3.3.2 Evaluation of the factors information and incidentlevel

The full model M4 is the best model according to Tdble b.18e Titiferences between
the planning methods become smaller if the incident leveleiases. Furthermore, the
performance of th&ACA method drops when the incident level is high. In Appendix J,
TablelJ.2 shows the coefficients for model M4 in its first cabum

5.3.4 Network topology

In this section the influence of network topology on the perfance is considered. In
Sectiori 5.1 we expected that performance depends on netwaology, via certain prop-
erties of the network topology, such as the network degreeeter, or average number
of alternative paths between source and destination. €ad® and5.20 depict the differ-
ences in performance for the grid, random, small-world, scade-free topologies, while
increasing the request load and incident level respegtivel

To make the comparison between different network topokogiere fair, an equal
number of resources (locatiore)d connections between the resources is used. In cases
where the transport network has fewer connections (e.gl, gtworks and scale-free
networks have fewer connections than small-world netwoniesxdom connections are
added to the network to obtain the desired number of coromexti

In Figure[5.19 it can be seen that random and small-world ordsvperform better
than grid networks, and a lot better than scale-free netsyarkhe request load increases.
Of course, for scale-free networks, the hubs (locationk witot of connections) create
bottlenecks in the network that lead to a decrease in pedoca

Figure[5.20 shows a similar situation for increasing inotdevel. Random networks,
followed by small-world networks, seem less sensitive tadants than the other network
topologies.

Figure[5.21 show the average network utilization on différgransport network
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Figure 5.19: The relative reward (average per task) fomheA-RR method withwait
heuristic on four different network topologies.

topologies. The upper-left plot represents a base situglbov workload, no incidents).
The plots on the right side have a high workload, the plotdhierbbttom include incidents.

Combining this figure to Figurés 519 dnd 5.20 it can be searhigh network utiliza-
tion results in decreased performance. Looking furthehairoperties of the networks,
the diameter of the network explains why. The grid topologg the greatest diameter,
the randomized network has the smallest diameter.

Small-world networks have the property that the path leggtiws logarithmic in the
number of infrastructure resources. Wang and Chen (20@3ept an overview of this
and other properties of small-world and scale-free netsioikhis path-length property
explains why it performs so well, because small-world neksdave a smaller average
distance from source to destination location.

5.4 Airplane taxiing experiments

Besides the experiments based on a synthetically geneiegtedet, a real-life transport
network is also considered. Experiments were conductetde8¢hiphol airport network
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Figure 5.20: The relative reward (average per task) fomheA-RR method withwait
heuristic on four different network topologies; the inaitléevel is varied and the request
load is fixed to 192 requests.

in the Netherlands (see Fig@ﬂ}or this transportation network, the taxiing problem
of aircrafts (on the ground) plays an important role thatrig@l to the performance of
the airportl(Ter Mors et al., 2007). The usual sequence ofrplaae after touch-down is
to taxi to a gate, then wait for services, such as cleaninardiog, safety checks. Finally,
before taxiing to a runway for take-off, sometimes a dega@tation must be visited. Due
to the approximately 300 airplanes (a number that is inangagper day that go through
this process, efficient and robust routing methods are redui

The goal of the airplane taxiing experiments is to compareect practice at Schiphol
to a more sophisticated approach. Current practice is t@asatext-unawarapproach
(such as theLAssIcAL method or Algorithni 2.2 of Hatzack and Nebel), which in these
experiments is compared to a context-aware approach, sutieACA method (Algo-
rithm([4.1).

The role of information on agent performance is reconsuiendile zooming in on
the context-aware shortest-path algorithm. For the rgutomponent, the type of infor-
mation might also be crucial to the performance of the systAnsecondary goal is to

5The network model of Schiphol airport was kindly providedtbg National Aerospace Laboratory
(NLR).
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Figure 5.22: Schiphol airport network consisting of 101&doesources.



130 Operational Transport Planning in a Multi-Agent Sejftin

show the usefulness of the context-aware routing approach @al-life transport net-
work.

In a multi-agent system, such a routing algorithm can beieg@equentially, once
for each agent. An individual agent profits from being eanlyhis sequence, as it is less
bothered by reservations of other agents. The relationdestwhe actual sequence and
the performance of the total system is less clear and aldmpéne experiments. This
is not yet a comparison between sequential and paralleingpuParallel routing might
further improve the performance. A parallel approach isdgipin MIP formulations,
which, unfortunately, cannot yet be applied to realistjcsized problem instances.

To make a fair comparison between the two approaches, egohithin was used to
calculate a route for the same start-destination pair,ngitte same set of prior reser-
vations on the infrastructure. For each set of reservatithres average time to find a
conflict-free path for 20 randomly chosen start-destimagairs is computed. To get an
impression of how plan quality and CPU costs (in time) depmmthe number of reserva-
tions, the experiment starts with an empty set of resema@md then grows. For each set
of reservations, the last conflict-free plan (out of the 2@oiral) found is used to obtain
new reservations. Those are then added to the existing sesefvations, and the new
set is used to calculate again the time for route finding. phigedure is repeated for
3000 iterations. This means that at the end of the proceésezvations for 3000 source-
destination paths are stored in the transportation netwbhle experiment is run twice:
the first time, plans generated by the context-aware apbndh distance heuristic were
used to make reservations, the second time the plans obbtayrtee algorithm of Hatzack
and Nebel (see Algorithin 2.2) were used. At all times, the stae of an experiment is
ts=0.

In Sectior4.2.1]1 the time complexity of the single-agentrse-destination routing
algorithm was analyzed. Recall that Corollaryl4.7 expreéske time complexity in the
number of infrastructure resources and transport ressumaie case that each transport
resource does not visit any infrastructure resource maue ahconstant number of times.
Therefore, a simple variant of the context-aware routirggpathm is introduced in the
experiments that visits each resource at most once (onlgliagyputes). Furthermore,
because of the resemblance to A*, at first sight, a contexr@w* variant is also in-
cluded to be able to see the differences between the twoithligsr in the experiment.
RemarK5.1l defines these two variants.

Remark 5.1 In the upcoming experiments, two variants of the contexaravgource des-
tination algorithm (Algorithni_4]1) are also considered¢omparison. These are:

e A context-aware variant of A* algorithm_(Dechter and Pedf85), the context-
aware routing algorithm can use an admissible and considistance heuristic
h(), which guides the search process towards the destinatigood candidate for
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this functionh() is the distance between source and destination if the presehn
other agents is ignored.

For the A* variant of the algorithm, several modifications aecessaryi) t +D(r)

in Line[8 must be replaced liy- D(r) +h(r,rq) whererq is the destination resource,
(i) Line[17, where the visited free time-window is removed frdm tet of free
time-windows, has to be removed from the algorithm (it is @megmore sufficient
to consider free time-windows only once) &iiig besides an OPEN lista CLOSED
list must also be considered. The OPEN list keeps track aietimodes that need to
be examined, while the CLOSED list keeps track of nodes the¢ lalready been
examined.

¢ A simple modification of the context-aware routing algamitks not to allow cycles
in an agents plan. For thecyclic variant of the algorithm, in Line_13, only suc-
cessors are considered that are both reachabj(jtt;)) and resource; does not
occur in the previous part of the plan of the agent

In Section(5.4.11 the results of the comparison between segtatvare and a classical
context-unaware routing approach are presented. Subshgugectiod 5.4]2 describes
the effect of the sequence in which agents plan. It is obvasuagent is better off when
allowed to make reservations for their plan before othentggéut this section will show
whether the performance of the total system is also influgrigethe order in which
agents create reservations.

5.4.1 Context-aware versus classical routing

From Figuré 5.23a it can be concluded that the context-urea@proach of the algorithm
of Hatzack and Nebel is so fast, the context-aware algostlook slow by comparison.
A closer look reveals that the context-aware algorithmsséitequite fast, as a solution
is found on average within two tenths of a second. Also, th @bnfidence intervals
are reasonably small, so this performance is reasonaliijestaVith regard to the dif-
ferent variants of the context-aware algorithms, it candenghat the no-cycles variant
is significantly faster than the other two, despite the faet this version has to check
for cycles in the routes of the agents. Note that the coraesre approach with distance
heuristic requires about the same amount of CPU costs (&) esithe version that utilizes
no heuristic. The cost of the additional open list operatierthe version with distance
heuristic must check for duplicates on the open list — motess cancels out the benefits
of having an context-aware search.

Furthermore, a clear notch is visible in Figures 5123ala@8Hh. just before 80,000
reservations, which shows the CPU cost (in time) as well asntimber of open list

SNote that Corollarf 4]7 applies here.
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Figure 5.23: Results for the case where plans generatedebfyeb-path method were
used to make reservations.

operations is not growing monotonically for an increasinigniber of reservations in the
transport network. Intuitively, the more reservations¢hare, the more difficult it is to
search a path through the transport network. However, aftding certain reservations,
the search might become easier all of a sudden, becausdiauidifpart of the network
does not have to be searched anymore (due to a reservatioprobibiting this). The
exact position of such a notch depends on the transport netaval the order in which
agents create these reservations for traveling to theiredetgarget locations.

Looking at the cost of the generated plans (Fidgure 5.23d)pthns generated by the
no-cycles variant are equally expensive as those gendratatjorithm[4.1 with or with-
out distance heuristic, both of which are optimal. The plaasle by the context-unaware
algorithm of Hatzack and Nebel are slightly longer (in tim&he context-aware planner
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Figure 5.24: If cycles are allowed and there are many reBensof other agents present
in the network, the context-aware algorithm often prodysaas with a cycle. An exam-
ple of a produced shortest path is highlighted in red, anditie steps are indicated with
the purple circles. Such plans are not considered by thdiasyarsion of the routing
algorithm.

with or without distance heuristic often steps aside frontraight line for other agents

to pass in their plans, see Figlre 5.24. This is not allowethbyo-cycles planner (as it
would induce a cycle). However, the no-cycles planner gélerates equally expensive
plans, because it usually can insert extra waiting timeae¥ar the plan. This also results
in the shortest plan lengths. In general, this can lead teogtinal plans.

For the plots in Figuré5.25, the results are given usingplaade by the context-
unaware algorithm to make new reservations. Although thesaientioned is still very
fast, the plans made by the context-unaware algorithm grefiiantly more expensive.
The reason is that many shortest paths will make use of the sasources, so after a
while a number of bottleneck resources will emerge, drazalyi deteriorating the per-
formance of the algorithm of Hatzack and Nebel.

The context-aware planners still manage to plan arounddtiteheck resources to a
large extent, but the search process is slowed down coasigekith an average CPU
costs (in time) of half a second per shortest path call, aeduent outliers of one or
even two seconds for a single shortest-path call. The ctateare planner with distance
heuristic suffers especially, presumably because thiartie heuristic, which is based on
the shortest path without reservations, directs the seayhhinto the congested area of
the infrastructure.

5.4.2 Planning in sequence

From Figuré 5.23d it is already clear why agents would pref@lan before others make
any reservations: the cost of the average plan increassglyrnwith the number of reser-
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Figure 5.25: Results for the case where plans generatedibgxteunaware Algorithin 212
of Hatzack and Nebel were used to make reservations.

vations in the system. Figure 5126 shows that if an agent@%'40line to make a plan,
then its plan cost will approximately be twice the cost of thieimum-cost plan, which
is the shortest path when reservations are not taken intuatc

This does, however, not mean that the sequence in whichaagplplan makes a
difference to the performance of the tosgistem We show the performance of the total
system for a group of 500 airplanes routing from and to randesaurces in the Schiphol
infrastructure. The same tasks are repeated 100 times iffghetht random permutations
in which the airplanes create their plans and make the rasens.

The relatively small 95% confidence intervals shown in FegbiZ26 indicate that for
the Schiphol airport network the order in which airplaneseree their plans is not signif-
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Figure 5.26: The average overhead (plan cost divided bymuini plan cost) increases
when an agent plans later.

icant; the overhead for beim{” in line does not vary greatly.

5.5 Summary

In this chapter two sets of experiments were described: ¢hergl experiments on oper-
ational transportation planning and the airplane taxixgeeiments.

General experiments The first part of the chapter is about the general experim@&inis
planning methods were ordered by increasing plan qualitye MACA method has been
underestimated and should actually be in betweemitkiea -RP andMACA-RR methods
according to the experiments. It outperforms thxecA -RP method not only in plan qual-
ity, but besides that it has much lower costs in terms of Ct¢tiThe ordering of the
planning methods with respect to CPU cost in time matchecrpectations. Knowing
the algorithms, this was much easier to expect in advancettigaplan quality.

Interestingly, the general experiments showed that thésdnsterms of CPU time
depend on the choice of heuristic. Generally, it turned bat heuristic that resulted in
higher performance also performed better with respect td @Re. If agents that make
better choices (i.e., use better heuristics) finish crgatieir plans more quickly.

With respect to incidents, the experiments in Secfion bsB@ved that the perfor-
mance of the agents decreases (following an S-shaped afitve) incident level in-
creases. Furthermore, the experiments showed that theratfitfe between the perfor-
mance of the various planning methods fades out if the imtid®el increases.

Section[5.34 described the experiments for differentsipart network topologies.
The scale-free topology showed the worst performance,iwdaa be understood, because
of the nodes with many connections leading to bottleneckisennfrastructure. The data
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obtained with the experiments further showed that it wagtté length that influenced
the performance. No significant relation between the nurabalternative paths between
source and destination resource and the performance wag fothe experiments.

Airplane taxiing experiments After the general experiments airplane taxiing on
Schiphol airport is considered. Current practice at Satlighthat airplanes follow fixed
routes from runway to gate and back. The experiments in b@pter show, however, that
using a context-aware routing method that dynamicallyeetpalternative routes at any
time results in much better performance. Of course, etlickgal aspects, which might
prevent Schiphol to change their current practice, are eyoe scope of this thesis.

The context-aware shortest path algorithm is, on thissgalSchiphol airport trans-
port network, compared to a context-unaware routing agpro&urthermore, two vari-
ants of the context-aware shortest path routing, are alssidered in the experiments.
These are a context-aware A* variant and a version that doesllow to visit resources
more than once (only acyclic routes are allowed).

The first thing to notice is that the context-unaware apgrasenuch faster than the
other algorithms. The context-aware routing algorithnwayéver, are also fast. Out of
the three context-aware variants, the acyclic versionite@ubit faster than the other two.

Furthermore, it is clear from the experiment that the carsevare algorithms per-
form much better than the context-unaware approach, esdjyeii situations where de-
tours might be profitable. There happens to be no significdiereince in performance
between the context-aware shortest path algorithm andytdia variant. Apparently, in
these experiments it is the case that when cyclic routessae oy the former algorithm,
the latter can usually introduce some additional waitimgetito end up with the same
performance.

Although it is clear that agents can create better plan®if tian before other agents
store their reservations, in the Schiphol airport expeni®ehe order in which agents
plan does not make a big difference to the total performaradl @gents together. It
appears that these performance differences that resuttiog girst or second are leveled
out between the agents. We certainly do not claim that tteslrénolds for different
network topologies.

Final note In general the default transportation planning algoritinosd be a context-
aware algorithm. If there is enough time, use txcA -RR method with thewvait heuris-

tic. If time is critical then thevACA method might be the best choice. If there is some
time for research available, it might be possible to improwethis with perhaps some
domain specific heuristiBs

’In such situations the transport planning simulateaAPLAS, which is used for all experiments in this
thesis, and its 3D-visualization project calfe’APLASVIZ are both available at SourceForge.



O
Chapter

Conclusions and extensions

WELL, I'M BACK FOR THE BUT... WHAT CAN
- CONCLUSION! BE CONCLUDED...?

In this thesis we have introduced a new framework for pickng delivery transport
planning, and we tested and compared several new approaxioesnpute a pick-up
delivery transportation planning for a set of vehiclesgkinto account time constraints
for loading and unloading.

The framework distinguishes transport agents and infregtre agents. The transport
agents create transportation plans and they communicttehvei infrastructure agents to
compute the reservations for accessing the infrastruces@urces by the vehicles. This
results in a flexible framework where the infrastructurerag&an use different policies
(such as first-come first-served). Furthermore, in casecadémts the infrastructure agent
can inform the transport agents that will be affected by tledent, and modify their
reservation(s) accordingly.

Chaptei b describes the experiments that were performegingathe transport net-
work topology, the request workload, and the level of innide We have seen that the
influence of incidents greatly depends on the transportarttopology. Intuitively, net-
works with more alternative equidistant routes betweerptbleup and delivery locations
are less sensitive to incidents than other types of networks

The main results of our research are the following:

137
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e First of all, by a careful analysis of the context-aware irmyitapproach, we have
succeeded in lowering the time complexity of the contex&@arouting algorithm
of Kim and Tanchoco in a significant way making it much mordaiue.

e Secondly, we have investigated the effect of several mdiof the infrastructure
agents. Of these policies, the wait policy outperforms ttieeiopolicies both in
plan quality as well as in computation time.

e Thirdly, we have investigated the role of incidents in cati@vare routing. We
can conclude thattACA-RP and MACA-RR are indeed more robust thamcA.
Random and Small-World networks are the least sensitivecidents, while scale-
free networks have the worst performance.

e Fourthly, with the airport taxiing experiments we have shatlat MACA also
works on a realistic network. Dynamic route planning camsicantly improve
the throughput of the airport.

In general the default transportation planning algoritiowd be a context-aware algo-
rithm. If there is enough time, use tivACA -RR algorithm with wait heuristic. If time is
criticial, themAcA algorithm is the best choice.

There are many more experiments imaginable, as well as mdegstons. The fol-
lowing list presents some extensions, which we found isterg.

Delta heuristic While reconsidering the example given in the introductectior 1.3,
we came up with the idea of a heuristic that might outperfdrendnes described in this
thesis. The example showed that it would do good to the tetdpmance of the system if
the priority of airplane®s would be increased. However, none of the mentioned heesisti
does soTODO

How to compute the delta value of age¢? Assume that airplanes;, Ao andAg
reserve their plans, while ignoring any conflicts betwe@sé Now compute the optimal
plan forA4, given that the plans d&;, A> andAs remain unchanged afg, is not allowed
to introduce any new conflicts with those plans. The deltaevaf agen# is the cost of
this plan minus the cost of the plan in ca&ecould reserve its plan prior t&;, A, and
As. Note that this delta value is always zero or positive (plast€ never decrease after
letting another airplane make its reservations first).

Using this delta heuristic airplan®;, would in all cases reserve its plan (along re-
sourcesrig,...,r12) prior to the other airplanes. This still is not the optiméhrp in
which airplaneA; must select the bottom route along resoumggs .., r11.

K-shortest path routing The approach of Hatzack and Nebel has been used in the
experiments in this thesis as an example of an approachrigtatdmputes a route (or uses
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static routing), and then solves conflicts. This approachlbmaextended by considering

k shortest paths witk > 1. Then, for each of thk routes, the conflicts are solved and
the best route will be chosen. This approach can signifigamiprove the results if the
transport network allowk routes that do not have too much overlapping resources and
at the same time are all approximately of the same lengthreTaee many algorithms
published to find theske shortest paths, suchlas Eppstein (1998).

Distributed version Although themACA-RP and MACA-RR are not completely cen-
tralized algorithms (the supervisor can reschedule angedutf agents and there can be
multiple supervisors), some steps can be made towards etehptlistributed algorithms.
In the field of Dynamic Traffic Management (Zuurbier et al.0&}) for example, it is not
acceptable to have a routing algorithm with a time compjea@pending on the number
of transport resources or the number of infrastructureuness in the system. Methods
developed in this field determine crossroad priorities daselocal information, which
might be necessary for large-scale systems.

Multi-objective routing  There are many different performance indicators. Hengs, it
likely that the actors have different objectives. It is pbksto optimize multiple objec-
tives while searching plans for the vehicles. This can béeaeld by integrating Traplas
and Samcra_(P. Van Mieghem and Kuipers, 2001; Kuipers andidim, 2005). Samcra
can search for an optimal plan given multiple objectives.

As an example, we consider the use of the following three ioet(i) time, like
before (but scaled between 0 and (i), network utilization (minimize resource load),
and (iii) incident count (gathered historic data). The idea of th@mseg®bjective is to
avoid resources with many reservations, because the phopélr an incident is greater
for such resources). The idea of the third objective is tacakasources, where there have
been problems in the past. Hence, the two additional obEsattempt to minimize the
probability of incidents along the route.

An experiment we performed is to give the first metric the ksjtpriority. In case
of ties we considered the second objective. If there washagaie, the third objective
decided on the plan. This did not significantly improve owutes. However, Samcra
actually uses a different mechanism to combine the diftesbjectives, which might lead
to better results. It considers all objectives and chodseglan that minimizes the worst
objective.

Reconsidering waiting time The context-aware routing algorithm always claims sub-
sequent resources as soon as possible, never spendingragtia the current resource if
not necessary. This fixed strategy might lead to congessedirees. It could sometimes
be advantageous to delay the traversal (if possible byngaii a parking space resource),
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thereby reaching the congested area later, while stilliegadhe destination at the same
time. This can decrease network utilization and leave mooenrfor the other vehicles
that still have to create reservations.

Arriving too early  For problem instances where agents arrive at the sourcestinde
tion location of a transportation request too early, it isgble to compute whether the
agent should slow down before arriving at this location, miva too early and take the
corresponding penalty. The latter might be a better detigithe agent is in a hurry to
reach other locations later in its plan. This problem candbeesl by formulating this as a
linear program, which can be solved in polynomial time. Qdirse, if this is done often,
it can slow down the planning method considerably. For tipearents in this thesis this
is not an issue, because the instances are intentionallg swath that agents are always
too late, or just-in-time in the optimal case.

Optimization stage Several approaches are described in this thesis that alupeo
feasible transportation plans. If there is remaining tinaailable, one possible idea to
make use of this time is to introduce an optimization staganyvocal search techniques
exists that can be used in an attempt to further increasesifiermance.

Communication incidents The incidents that have been considered in the experiments
in this thesis are malfunctioning resources. The speedfidstiucture or transport re-
sources was reduced by a factor (the impact of the incidettyden O and 1. Another
common source of incidents is failing communication betwgansport resources and
the planning system. For example, in container termin&speed of transport resources
is reduced if the transport resources have no communicadibrthe system.

Two more topics that we have considered are collaboratiaxbiianging transporta-
tion requests, and the effect of mixing different transatioh planning methods. Because
we can also show some experimental results here, a sectievaosed to each.

6.1 Collaboration

The transport planning methods described in Chdgter 4 donoatify the assignment
of transportation requests to the vehicles, and also do ndifynthe order in which the
requests are executed. It is possible that an assignmentmilght have been a good
choice in the past, becomes a problem later — either due tocatent, or a better plan
might have become available due to changes in the plans ef agents.

For this reason, aollaborativestrategy is included, in which the transport agents
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Figure 6.1. Average relative reward forACA-RR with wait andtask heuristic on grid
networks. The two extreme values 0 (RR) and 1 (RRC) are ussettine collaboration
level of the agents.

exchange transportation requests with each other. We thaitrthis will lead to a statis-
tically significant increase in the performance of the agent

To model collaboration between a group of agents, a promeattgd collaboration
levelis added to each agent, which is a number between 0 and 1 fimgjcg collabo-
ration level. If this value approaches 0, the agent only wémiexchange transportation
requests to its own benefit. If it approaches 1, the agent ie mware of the system as a
whole and exchanges transportation requests with othetaié is better for the system.
For the experiment in this section, we restricted to exchmigansportation requests one
by one, i.e., each agent tries to give each of its requestsititvar agent. It is also possible
that, in a certain situation, performance can be improvegiting away two requests and
receiving one requests at the same time. Finding such regxelsanges, however, will
cost much more in terms of CPU time.

Figure[6.1 shows the results of the two extreme values 0 aod thé collaboration
level. This clearly shows there is a big advantage lettirgatpents exchange transporta-
tion requests with each other. Using collaboration is abvagvisable. It can be used to
improve the current plans until the time is reached at whitimamediate decision is to
be made (i.e., as anytimealgorithm).
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Figure[6.2 shows the additional CPU time that is needed bgdhaborative version
of the MACA-RR method. Up to a certain number of transportation requestsght
be acceptable, but with many transportation requests,llitb@come too slow. Notice,
however, that in such cases the method can easily be sped gt lbgying all possible
exchanges of requests.

6.1.1 Collaboration and incidents

For the experiment described in this section, the numbeansportation requests is fixed
to 192 requests. Then, we varied the incident level. It casdam in Figuré 613 that the
performance decreases in a similar way. If the incident lmaches its maximum value,
it does not matter much which method is used, the performasmehes its minimum
value. Hence, we can see the methods come closer to eachasttiee incident level
increases.

Furthermore, thenACA-RRC wait method, which performs best without incidents,
also performs best when the incident level increases. Becthe performance of all
methods decreases in a similar way, there is no reason taneseethod for a certain level
of incidents, while choosing another method at anothedendi level, when performance
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methods on grid networks; the incident level is increasimg) the request load is fixed to
192 requests.

is considered.

Figure 6.4 shows the CPU cost (in time) of the same experinkare it becomes clear
that the CPU time required by theacA-RR wait method grows rapidly if the incident
level grows. It grows significantly faster compared to theufes of the previous section,
where the number of transportation requests increased #terhorizontal axis.

The next section considers the effect of mixing differeahgport planning methods
in the same environment.

6.2 Mixed strategy

Until now it was assumed that all agents in the system apftiedame planning method.
Combining different methods in the same setting might alflaénce the performance of
the agents. For example, suppose that a system with altraggnts reaches the highest
performance encountered in experiments. But now add arl equoaunt of selfish agents.
Which group will have the best total performance? Combametiof planning methods
occur in many real-life systems, where one usually does aw¢ Hull control over all
agents in the system. Rather, there are several partiesgq@ngpanies) involved that each
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control a subset of agents in the system. The possible irfduehhaving mixed planning
methods will be investigated.

In many application domains, the system designer does wetfadl control over the
system. This might be the case when multiple companies aoéved who do not want
to share all of their private data, or when the agents of tkeesy designer should be able
to mingle with existing traffic. In these situations the gigrs arises whether planning
methods that have been proven to be the most efficient in #wqus sections will still be
the best performing methods. Perhaps other methods ootpettiese methods, because
they can handle these external traffic flows better. In thetige the planning methods
are tested in this setting.

The agents are divided into groups. Agents within the sarmemhave the same
behavior, they use the same planning method. Other groupiain@agents that use other
planning methods. The relative rewards presented in Fi§ieare not summed over
all agents in the system, but instead, it is the contributiothe system performance of
the agents per group. This means the total relative rewaadtigally the sum of the
contributions of all groups.

As can be seen in Figufe 6.5, tlhveCA-RR method withwait heuristic and collab-
orative agents gains the highest performance. The ordefiptanning methods did not
change compared to the situation where all agents in thersyssed the same planning
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method.

It is apparent that one cannot just apply one of the simpletey methods and hope
for good performance in general. Even with some noise ofr@bents using other plan-
ning methods, it turns out the better planning methadsdA -RRC walit) still outperform
the other planning methods.
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Appendix

Notation

As a guide for the notation used throughout this dissenatibe following table lists
several important used symbols. Most of the time, a standaadopted that uses small
letters for simple variables, capital letters for sets, IE@eeek letters for composed vari-
ables and a calligraphic font for structures. The sectidmoa refers to the section where
the symbol is defined.

symbol meaning section
I infrastructurd = (R, Eg, k™ k' d" s"f &7 is a tuple of B.1.1
resource®, arcskg, infrastructure resource capacity
functionk™, transport resource capacity functikh
infrastructure resource distance functi,
infrastructure resource speed functaith and transport
resource speed functiaH.

Rinf set of infrastructure resources. 311
d set of transport resources. [ 311
R set of all resourceR= R™ U R, 311
Er infrastructure resource connectivity relation B.11

ErC Rinf « Rinf.

Kinf K"(r) e N is the capacity of resouraes R™. 311

KY k' (v) e N is the capacity of transport resource RY".

Lr a family of functions, wheré, (t) € N is the current load [3.3.2

at infrastructure resourges R" at timet e T. For
transport resourcee R, L, (t) € N is the sum of the
volumes of the loaded packages at time
dinf d"(r) e R is the distance of resources R™. 311

(continued on next page)
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symbol meaning section
gnf s"(r) e R is the maximum possible speed at resource
re R,
g §'(v) € R is the maximum possible speed at resource
ve R,
Et E¢(r,t) € [0,1] is the effective impact of incidents with

resourca € Rat timet taking into account incidents
known at the time of computation.

S ss(u,ri) € Ris the static speed of traversing infrastructure
resource; € R" by transport resourcg € R' not taking
into account incidents.

oy sq(w, ri,t) € R is the speed of traversing infrastructure
resource; € R" by transport resourog € R' at time
t € T taking into account incidents known at the time of

computation.
T T =R u {—w,0} is the set of all possible time points. [B.1
W set of all possible time-windows (intervals of time) 3.1
W=TxT.
t a single pointintimeé e T. 3.1
T a single time-windowr e W. 3.1
T an actual time-window € W that was used for some

event, e.g., loading freight, during simulation.
Ib(1),ub(t) lowerbound and upperbound of window

T = (Ib(1),ub(1)).

O total set of transportation requests. [ 312

Oy set of transportation requests assigned to transport  [3.1.2
resourceve RY.

0j oj = (fj,sj, 77, dj, rf', ;) € Ois a transportation request: [3.1.2

freight should be picked up in source locatigre R
within time-windowrjS e W, it should be delivered in
destination locatiod; e R™ within time-windowr]d eW,
and the reward for doing so 1§77, fjd) € R where
;eWand ff' e W are the realized pick-up and delivery

time-windows respectively.

(continued on next page)
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symbol meaning section
u performance, if not explicitly mentioned otherwise the
relative system reward.e., the sum of realized pickup
and delivery rewards of all requests divided by the pickup
and delivery rewards in case the requests would have been
loaded and unloaded within the specified time-windows.
1] CPU cost in terms of time

T set of incidents. An incidert;,r,i,7) e Z isaresource [3.1.4
incident, which is announced to the agents at release time
tr € T, affects infrastructure or transport resourcer,
has impact 6< i < 1 and is effective during time-window

T.
A set of agents. 3.3.2
Rt, routeRY, of transport resourcee R is Rt,1,...,Rin. 332
Sd, schedulesd, of transport resourcee R is 332
Sd,1,...,Sd;n.
Q Q(r) € Ax W is the set of agent and time-window pairs
stored at infrastructure resounce R™.
Ly Ly(0) € T is the time at which transport resource R" 332
picks up the freight of transportation request O,.
Uy Uy(0) € T is the time at which transport resource R"  [3.3.2

delivers the freight of transportation request O,

argmin.sf(s) the argmin denotes an arbitrary valwe Sfor which
f(m) = miSnf(s) holds.
ES

argmax.gf(s) the argmax denotes an arbitrary vatae Sfor which
f(m) = m%xf(s) holds.
S

Table A.1: List of symbols.
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Appendix B

Glossary

Agent

AGV Abbreviation for Automatic Guided Vehicle or Autonomousi@d Vehicle. The
Material Handling Institute defines an Automatic Guided gEhas “a vehicle
equipped with automatic guided equipment, either eleciigimetic or optical. Such
a vehicle is capable of following prescribed guide paths mag be equipped for
vehicle programming and stop selection, blocking, and ahgrespecial functions
required by the system”.

Algorithm An algorithm is any well-defined computational procedurat tiakes some
value, or a set of values, as input and produces some val@eser of values, as
output. An algorithm is thus a sequence of computationglsstieat transform the
input into the output.

Deadlock [Gridlock is a deadlock due to spill-back?]

Dependent variables The variables that are measured, as opposed to variablesréha
varied, during an experiment. Also referred to as performreandicators or score

variables.

Gridlock Gridlock is a term describing an inability to move on a trasrspetwork. The
term originates from a situation possible in a grid netwoHeve intersections are
blocked, prohibiting vehicles from moving through the mstction or backing up
to an upstream intersection.

The term gridlock is also widely used to describe high trafflengestion
with minimal flow (a traffic jam), whether or not a blocked grgystem is
involved. By extension, the term has been applied to sinatiin other
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fields where flow is stalled by excess demand, or in which cdimgenter-
ests prevent progress/copied from Wikipedia, for a visual hint, look here:
http://en.wikipedia.org/wiki/lmage:New_York_City_i{@lock.jpg]

Independent variables Variables that are under control of the experimenter. A&so r
ferred to as experimental variables.

MACA Multi-Agent Context-Aware routing, see Section 412.2.

Makespan The makespan of a schedule refers to the total execution Tiliis is the time
at which the last agent finishes plan execution. Often, cieengits to minimize the
makespan, which comes down to minimizing the maximum cotigpi¢ime of all
agents.

Mobile entity
Resource

Transport resource



Appendix

Introduction to agents

In 1950 Alan Turing proposed his famotiaring tesf designed to provide a satisfactory
operational definition of intelligence. A human operatdemogates the computer via
a teletype. If the human cannot distinguish whether theen@her human being or a
computer at the other end of the line, the computer has pdbsetdst and should be
called intelligent. Shortly after the Turing test, the teantificial intelligencewas first
mentioned.

The termagentsvas introduced by Putnam (1960). Itis likely the idea oragées from
psychology!l Skinner (1953) tried to define the psychologgrghnisms by solely using
input/output or stimulus/response mappings. Nowadagsetbxist many definitions for
the concept agent, though none of them is generally acce@eting of with a weak
definition of an agent by Russell and Norvig (1995), severaperties are listed here
that are generally required to be present for an entity todlectan agent. Then, some
properties are listed that for some people are necessanthers superfluous, conditions
to call something an agent.

Definition C.1 (Agent) An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon that envirohrtteough effectors
(Russell and Norvig, 1995).

In general, it is accepted that agents must at least havellbe/ing properties:

e Autonomy — agents have the ability to act without being tolthtvo do and when
by others.

e Persistence — agents are not products that are producechsurned, but live a
relatively long life.

e Computational abilities — presence of non-trivial compiotss; this, for example,
excludes thermostats from being agents.
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Comment: - Insert image here: overview of an agent: e.g., beliefsfrohngoals,
strategy, input, actions.

- The term "agent"” describes a software abstraction, an mtea concept, similar to
OOP terms such as methods, functions, and objects. The moofcan agent provides
a convenient and powerful way to describe a complex softwatiy that is capable
of acting with a certain degree of autonomy in order to acd@hpasks on behalf of
its user. But unlike objects, which are defined in terms oftrods and attributes, an
agent is defined in terms of its behavior. [Introduction tolfigent Systems, Michae]|
Woolridge].

In addition, some people require even more before theyealkeshing an agent. Some
of these properties (Graham, 2001) are:

e Mobility — the opportunity for an agent to move around.
e Veracity — agents will not knowingly communicate false ilrnflation@
e Benevolence — agents occupy the unbiased kindness to do good

e Rationality — an agent will act in order to achieve its goald aot to prevent its
goals from being achieved.

Agents can either be humans, software or robotic agentseEne many realistic systems
that consist of a mixture of human and software agents (@tglligent user interfaces,
e-commerce, search engines).

Agent-based theory has been well studied. This has resulté& many agent plat-
forms that are available, for example, the Java Agent Devetnt Environment (Jade),
Java Agent-based Simulations (JAS), System for Parallenf®iscrete Event Simula-
tion (SPADES) and many others. And also agent communicéioguages like Knowl-
edge Query Manipulation Language (KQML) or the one used ahBation for Intelligent
Physical Agents (FIPA).

A group of these agents can form a multi-agent system. Aaecgtd Graham|(2001)
the main multi-agent system specific design issueanemunicationinteraction co-
herenceand coordination Multi-agent systems offer a high level of encapsulatiod an
abstraction. Agents can be created by different develppsrkng as they can agree on
how they communicate with each other. Multi-agent systeamsvery well be used in the
transportation domain.

Definition C.2 (Multi-agent system) A multi-agent system is a loosely coupled system
network of problem solvers that work together to solve peold that are beyond their
individual capabilities (Durfee, 1999).

INote that this does not include honest mistakes.
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Definition C.3 (Coordination) Coordination is the regulation of diverse elements into
an integrated and harmonious operation. Coordination meategrating or link-
ing together different parts of an organization to accosipk collective set of tasks
(Malone and Crowston, 1994).
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Appendix D

Complexity of transport planning

When evaluating algorithms for transportation planningoat of reference is desired.
Without this, only empirical results can be gained for thefgmenance of a candidate
algorithm. There might exists other ones that are much ibefiee way to give such a
reference point is to look at complexity theory (see Mar&9€l) for an extensive survey
on complexity theory). The objective of complexity theosytdo establish bounds on the
behavior of the best possible algorithm for solving a giveobpem — whether or not

such algorithms are known.

Within a complexity class, a problem is calledmpleteif every other problem in the
same class can be reduced to this problem. When a problermmgete, it belongs to the
most difficult problems of that complexity class.

A well-known and often used complexity class is NP (Non-detristic Polynomial
Time). To this class belong, for example, famous problekes3atisfiability, the Travel-
ing Salesman Problem, and the Vehicle Routing Problem.siinlod been shown that any
of the problems in the class NP truly requires exponentiaihowever, completeness in
this class may safely be taken as strong evidence of inbiditgalf any complete prob-
lem would also be solvable efficiently, then all problemshia tlass would be solvable
efficiently.

We are now going to prove, that the decision variant of thesgpartation planning
problem belongs to NPC, the class of NP-complete problenygintization problems
can easily be changed into decision problems by settingesiiotd value to the opti-
mization criterion. The question “what are the minimal sdstexecute all transportation
requests?” is transformed, after adding a varidbN, into “is there a solution to exe-
cute all transportation requests with costs less than aalegiK?”. It is obvious that the
search/optimization variant of a decision problem neveaisier than the corresponding
decision variant.

Definition D.1 Decision variant of transport planning (DTP)

157



158 Operational Transport Planning in a Multi-Agent Sejftin

Given the model of transport planning in Sectionl 3.1 and #réopmance criterion
that measures the total distance traversed by the trangsmtrces, does there exist a
plan for the agents that execute all transportation requwegh total distance traversed by
the transport resources less than or equél?o

To prove the NP-completeness, the decision variant of akwellvn NP-complete prob-
lem Shortest Hamilton Path is used. This problem is amonge hst of problems known
to be NP-Complete in the compendium of NP-complete probleyisove (1999).

Comment: This reference might be about the non-decision variant SHP. ‘

Definition D.2 Decision variant of Shortest Hamilton Path (DSHP)

Given an undirected and comp@@ath = (V,E) and a distance functioth: E —
R®, does there exist a path that visits all nodes exactly oncehiach the sum of the
distances of all edges in the path is less than or equéPto

Theorem D.3 The decision variant of the transport planning problem (D) Belongs to
NPC, the class of NP-complete problems. 0

Comment: The following proof requires major revision.

PROOF. We have to show that DTP belongs to NP and that any othergmobi NP can
be reduced to DTP.

The fact that DTP belongs to NP can easily be seen. We mustlbaaberify in
polynomial time that a ‘yes’-instancétp of DTP has indeed costs less than or equal to
K given the plan for all the trucks. This means we only have toutate the cost function
and confirm it is less than or equalko

Next we prove, that the NP-complete problem Shortest HamMath (DSHP) can be
reduced to DTP. Since DSHP is NP-complete (L.ove, 1999), aollem in NP can be
reduced to DSHP. And if DSHP can be reduced to DTP, then arer ptoblem can be
reduced to DTP too and DTP is NP-complete.

Figure[D.1 illustrates the transformation from an arbitrBISHP instance to a DTP
instance. Every node €V in DSHP is duplicated and represented by two infrastructure
resources; andd; in DTP. A connection is added from infrastructure resowgrt¢e infras-
tructure resource; with distanceK + 1. A transportation request must be planned from
pick-up resource; to delivery resourcel;. The volume of all transportation requests is
equal to the capacity of the truck. The pick-up and delivanetwindows of all trans-
portation requests are infinife-co, 0|, so these are never violated. There is one transport

LComplete graphs have a connection between each pair of nigsldistance might be infinite however.
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(a) Arbitrary instance of  (b) Result when Figude D.1a is transformed (arcs leadngls, and
SHP. d4 are omitted for clarity).

Figure D.1: Transformation from an arbitrary Shortest HeoniPath (DSHP) instance to
the decision variant of transport planning (DTP).

resource starting in an extra created infrastructure resoy, that has connections to ev-
ery pick-up resource. These connections have length 1yEwvefirected edgév;,v;) in
DSHP is transformed into two directed connecti¢gsp;) and(dj, s) of the same length
in DTP.

More formally, the transformation from a DSHP instariGd,K) to a DTP instance
(L,A,d’",T,caploc,O,K’) is the following:

e For every node in the DSHP graph, we create two locatgpasadd; in DTP. And
for the transportation resource, we create one extra infretsire resourcep, SO
L=SuDu{ro}, whereS={s :vieV}andD = {d; : vi e V}.

e There is one transport resource, initially placed in laatip and with a capacity
of one:R; =ry, loc(ry) = ro andcap(ry) = 1.

e Each node in DSHP results in one transportation requesttageransformation.
The volume of the package in this transportation requesjuslgo the capacity of
the truck and all time-windows are infinite (they can neveviodated):

O = {(s,di,cap(ri),[—o0,]): 5 € Sad e D}.

e The infrastructure resource connectivity relation in thEPFDnstance is
E = E; U E> U E3 whereE;, E,, andEs are defined as follows:
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1. There are connections from every pick-up location tootsesponding deliv-
ery location. The travel time of these arcsis
E1={(s,di):s€SAd eD}
d'(at)=K+1VaeE;,VteT

2. There are connections from infrastructure resoutoesvery pick-up location.
The travel time of these arcs is 1:
Ex={(r,5):s€ S}
d'(at)=1VaeEy,VteT

3. There are connections from every delivery location toepéck-up location
of an other transportation request. The travel time of tlaesg is the same as
the distance between the corresponding locations in theFDiSstance:
Es={(dj,s):seSAadjeDnAi#j}
d'((dj,s),t) =d(vj,v) V(dj,s) € E3g,Vte T

e K'=(V|+1)(K+1)

The correctness of the transformation is proven by shoJddhat a yes-instance of
DSHP is always transformed into a yes-instance of DTP(ahd no-instance of DSHP
is always transformed into a no-instance of DTP. Al@),the transformation must be
computable in polynomial time.

a) Suppose we have a yes-instaigeyp of DSHP. This means there must exist a

path (Vy, , Vx,, Vxs, - - -, Vx,) that visits alln nodes and has costs less than or equal
to K. After the transformation, the transport resource carofolthe same path
(10, Sxqs Oxg s Sxos Oy - - -5 Sxys Oy, ). This path will execute all transportation requests,
because it contains all pick-up and delivery locations (heccapacity of the trans-
port resource is no problem, since never more than one twa@asion request is
loaded). The truck will not violate time-windows, because @nly have infinite
time-windows. The costs are 1 for going to the first pick-upakion, K + 1 for
traveling from each pick-up location to its correspondimgdj\eéery location andR

for the rest of the plan. The latter cofsare exactly the costs of instant¥gsyp
and, sincépsypis a yes-instance of SHP, we have tRat K. The total costs for
the agent are

1+[0|(K+1)+R<1+[0|(K+1)+K
=V|K+1)+K+1=(|V|+1)(K+1)
=K’

And therefore, the instance of DTP is also a yes-instance.
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b) Suppose the transformed instarRi¢) is a yes-instance of DTP. This means that
there is a plan with costs less than or equaktoln such a plan, all arcs of length
K + 1 are traversed, because all transportation requests mesecuted. Thus we
have

C(Plan(t)) <K'= (|V|+1)(K+1)
C(Plan(t)) = V|(K +1)

Combining these equations shows that the truckkiasl left to visit all pick-up
locations. The first action of the truck is to drive from itgti@l position to the first
pickup, this arc has costs 1. Note that for visiting all othiek-up locations, an arc
Is used that has the same costs as an edge in the DSHP ins&ance.we stated
thatR(l) is a yes-instance of DTP, there is a path that visits all pigkecations
and has costs less than or equaKtorhis path cannot visit any location more than
once, because then, for soman arc(s;,d;) must be traveled more than once with
costsK + 1. The path corresponds to a Hamilton path in DSHP with ceststhan
or equal ta&K. And therefore, if instanci(1) is a yes-instance of DTP, then instance
| is a yes-instance of DSHP.

c) It is easy to see that this transformation can be done ignpohial time. One
transport resource is created an¥ [2+ 1 infrastructure resources. There &ve
connections from the initial position of the transport ni@®e to the pick-up loca-
tions,|V| connections from the pick-up to the corresponding deliVecgtions and
2|E| additional (directed) connections (i.e., the connectiarise DSHP-instance).
Then,|V| transportation requests are created and the \Wlicomputed (irO(1)
time). The complete transformation can be don@®iiV| + |E|) time. n

The decision variant of transport planning (DTP) and this® @he transport planning
problem are NP-complete.
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Appendix E

Transport planning simulator -
TRAPLAS

Intro ... Before that several important properties of thewgation tool are described. We
start with the Pamela run-time library that can be viewedhasimulation kernel. Pamela
supports light-weight processes and semaphores and hedesgebe how that can be
used for communication between the agents and enforcingcttgpconstraints on the
transport network.

\ Comment: - Some TraplasViz screenshots.

E.1 Pamelarun-time library

TRAPLAS is based on the Pamela run-time library [cite: technicabrepvG].

The Pamela run-time library provides a concurrent, geraugbose performance sim-
ulation interface, based on the procedure-oriented (‘$¥}&”) paradigm [cite: Andrews
and Schneider, “Concepts and notations for concurrentranogning”].

The library contains two important data typ€@$ processes an@) semaphores.

Processes are light-weight threads with their own locad tstamp, in which the global
simulation time is stored either at which it has been suspefid the past) or at whichiitis
resumed (in the future). At any time, only one process camnibeing All other processes
are eitherunnable-i.e., scheduled to run at their local time stamp — or theybveked
—i.e., waiting on a semaphore until another process liftsstitock by executing pam V
operation on this semaphore. Pamela processes are sahedugreemptively. This
means that execution of a process continues until it votiptaleases control.

Several important function in this library with respecthe processes and semaphores
are listed here together with their description.
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datacredit=2
roomcredit=3

msdL ms@

Figure E.1: Message queue with buffer size 5.

pam ti nme() Getthe current global simulation time.

pam del ay(s) Calling process delaysseconds. Control is (in general) given to an-
other process.

pam al | oc() ...

pam P(sema If semaphoresemadoes not have sufficient credit, the calling process is
blocked until another process lifts the semaphore’s crdtliithe semaphore does
have enough credit, it is decreased and the calling pro@msains the running

process.

pam V(sema The credit of semaphorgemais increased. The calling process always
remains running.

pam T(sema This function returns (tests) the current credit of semapkema If it is
negative, it indicates the number of processes that arddsdioan this semaphore.

pam fork() ...
pamexit() ...

pam quit() ...

E.2 Communication

Comment: Type of simulation (event-based, about time, etc., disareént simulatior
mechanism)
- H&N scheduling, event graph (using messages) for stanmepmjanning rounds
Maybe also planning by agents in general (e.g., message famyains)
- deadlock (cycle) detection: Tortoise and Hare (optimahptexity).
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Communication functions.

1. procedure SEND(Messagem)
2 pam_P(room)

3: push(m)

4 pam_V(data)

5. end procedure

6: procedure RECEIVE
7 pam_P(data)

8 popm

9: pam_V(room)
10: return m

11: end procedure

12: procedure RECEIVE_IMMEDIATELY
13: if pam_T(data) > @hen

14: return Receive()

15: else

16: return NO_MSG_AVAILABLE
17: end if

18: end procedure

E.2.0.1 Execution

The same execution method regardless of what planning mhéshchosen (good safety
check).

Capacity of infrastructure resources safeguarded by Seonag.

A cycle detector watches for deadlocks. Two-cycles are hotvad. Simultaneous
exchanges are.

Comment: What about too many swaps?

E.2.0.2 Statistics

MEASURE((variable, value, save_to_log) [lunchlezing]

Number of samples, Minimum, Maximum, Sum, Average, Vargr&8ewness (Sym-
metry around mean), Kurtosis (peakedness/flatness)

Last four (four moments) can be used to determine the digitab using Generalized
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Traveling from infrastructure resourceto resource.

1: procedure DRIVE(r1,r2)

2. pam_P(capg))

3: arbitrated_pam_V(cap())
4 pam_delaydrive _cosi)

5. end procedure

6: procedure ARBITRATED_PAM_V(sema

7 pam_Veema

8: Reschedule processes blockeddema
9: end procedure

Lambda Distribution (GLD).

My = = 100" (E.D)

E.3 Distributed ASCI Supercomputer (DAS-3)
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Figure E.2: The DAS-3 cluster at the Delft University of Taology consists of 68 dual-
CPU 2.4 GHz AMD Opteron DP 250 compute nodes, each having 4 fGBzmory and
250 GB of local HD space. The cluster head node consists oah@RU/dual-core 2.4
GHz AMD Opteron DP 280 with 4 GB of main memory and an additlé?alD6 storage
system of 5 TB. The cluster is equipped with 1 and 10 Gigahiti‘ernet.



168 Operational Transport Planning in a Multi-Agent Sejftin




Appendix

Transport network topologies

This section describes different transport network togias, which occur frequently in
practice. For all of the topologies exist algorithms that ceeate random instances, which
are used for the experiments in Chapfer 5 to generate theeddransport networks. But
first, several transport network properties are listed, byctvthe topologies differ. The
performance of these different topologies with correspagdifferent network properties
will be tested and compared in Chagtér 5; it is likely not athlg performance in normal
circumstances, but also in case there are incidents wilklpg different. For example, a
network with multiple alternative routes from a source toeatthation location is likely
to be less influenced by incidents, because agents can tatewr of needed.
The network properties characterizing the different togas are:

e diameter: the longest path in the network,

e options: the average number of equidistant alternativeesohetween any pair of
locations,

e average path length,

e clustering coefficient: how many of a location’s connecsi@ne also connection to
each other?

e betweenness: degree the shortest path between two otla¢iolecis through this
location.

Regarding the clustering coefficient property, if a locatiasn connections, there can
be at mosh(n— 1)/2 connections between the connected locations. If therm daet m
connections between those connected locations, the shgoefficientC is defined as
C =2m/n(n—1). Hence, the clustering coefficient is always@ < 1. Itis 1 for fully-
connected networkst is approximately 1|R""| for random networks, but it has a high
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Figure F.1. Example of the random topology.

variability. The betweennees is measured by computing all shortest pativeen all
pairs of locations and incrementing counters for intermdiocations on these shortest
paths.

The different topologies are the random, tree, grid, snwallld, and scale-free topolo-
gies, which will be described in turn in this section.

F.0.1 Random topology

Although it was stated before in this thesis that it is noffisignt to look at random
transport networks — one would not have enough time to psoagspresentative set of
transport networks in experiments, it is still an importenology to consider.

Three different ways can be adopted to create a random temsgtwork, these are:

1. create a spanning tree, then randomly add more edges,

2. create a fully-connected network, then randomly remalges,

3. create an edge for each of t(’@ pairs of locations with a given probability.

An advantage of the first method, which will be used in Chaptds that the resulting
transport network is always connected, i.e., it is posgibleaverse from any given loca-
tion to any other location. If a transport network would netdmnnected, one would first
have to divide the problem instance into smaller instantedsng into account that some
transportation requests simply cannot be executed.
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Figure F.2: Example of the grid topology with some diagonals

Comment: Gregory Provan (from Cork), who among other things workedoto-
mated model generators, claimed that random networks clhoapture generic struc
ture of a complex system, but are not very good at detailedtstre. He also mentions
alternative approaches to changing to random Small-Wanlittsires.
Also, he claims that random networlase very good estimations in the domain pf
model based diagnosed, and probably also for many otheridema
Gregory claims that all complex systems h&yehort distance between any two nodes
and(ii) high clustering (these are power law properties).

Diagnosis is especially difficult when subcomponents agallgiclustered; graph col
oring problems are difficult when neighboring lands have yr@mnections (up to th
point the instance is uncolorable).
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F.0.2 Tree topology

A tree network is actualy constructed by the step of the fiethmod to generate a network
with random topolgoy of the previous section. In this stepamdom spanning tree is
constructed.

The interesting thing about a tree network is that there @ty one shortest path be-
tween any source and destination location. This makegdrgi)g computations trivial.
The downside of this, is that tree networks are very semstovincidents, as the agents
are not able to take detours.

With respect to the network properties, the options prggsri — its smallest possible
value.

F.0.3 Grid topology

Figure[E.2 shows an example of a grid network. A distinctimmade between a regular
grid network, having only horizontal and vertical connens, and grid networks where
some (at most two per square) diagonals are also allowed. ndhaegular diagonal
connections are introduced to be able to make a more fair ansgn between different
network topologies. For example, in Chagtér 5, it is attedgb compare networks of
different topologies that have an equal number of locataomsconnections.

Regularn x n-grid networks have a diameter nf+ n. The number of equidistance
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Figure F.3: Example of the small-world topology.

Figure F.4: Example of the scale-free topology (taken frorkipédia).

shortest paths grows while source and destination areciugibart, and is quite big (op-
tions is large).

F.0.4 Small-world topology

The characteristic property of small-world networks isttthee average path length be-
tween locations grows logarithmic with the number of looas in the network. The

type of network is also popular in social networks. Althoulé earth population grows
rapidly, it is conjectured that within seven handshakes guir of persons know each
other.

In a small-world network, each location is connected to gdocations. And, only
sometimes, a node is connected to some node far away. Suth@kes usually created
by starting with a circle of nodes. Then, each node is comukitt thek/2 nearest neigh-
bors to the left, and itk/2 nearest neighbors to the right (in Figlrel k.3 4 is used).
Subsequently, with a small probability<Op « 1 each connection is rerouted to a different
node. Ifp approaches 1 the resulting network is of the random topology

Considering the network properties given at the start of saction, the clustering
coefficient remains high, while the average path length grelawly (logaritmically).
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(b) Screenshot of the Sealand terminal in AGVSim.

Twente.

Figure F.5: The underground logistic system connectingaler, Schiphol and Hoofd-
dorp and the Sealand terminal of Europe Container Termi{ia@3). The latter has a
stocking yard at the top and quay cranes (un)loading shifrediottom, the AGVs drive
in unidirectional circles.

F.0.5 Scale-free topology

As an example of a scale-free topology, compare a roadmapaolae routing map. On
the roadmap, one can see each city connected to a highwayeatby cities connected.
On the airline routing map, however, one usually sees tltpaoports are connected to
many other airports.

F.0.6 Fully-connected topology

If the path between source and destination is shorter, tbiegpility of malfunctioning
resources and conflicts with other agents is smaller. Inlg-bdnnected network, there
are so many connections the agents can always take the chrgotction while traveling
and hence have maximum opportunity to avoid malfunctiomgspurces and conflicts
with other agents (whereas cities were connected to onlypoadew highways).

F.0.7 Realistic topologies

Another example of a realistic topology that is used in theeexnents of Chaptér 5 is the
Schiphol airport network that is presented in Figure 5.22.

Not only for the transport networks it was important to lodlddferent topologies,
but this also holds for incidents. In the next section sdvecédent models are described,
which are commonly used to model the occurrence of inciderrsal-life situations.
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Appendix

Incident models

In reliability engineering, itis common to model the soledlhazard rate function by one
of the functions illustrated in Figufe G.1. On the left, adrakzrate curve is shown known
as thebathtub,due to its shape. The time interJj&j,t1] is referred to aifant mortality,
usually due to production failures. Then comes the nornf@lduring [t1,t2] with an
almost constant failure rate. And, finally, after tirethe failure rate increases again
as the product exceeds its design lifetimeéroutfailures). The bathtub curve is often
used to model the failure rate of electronic componentsfaliere rate for mechanical
components might very well follow a different curve.

On the right, a negative exponential curve is shown. Thisrfairate function is ever
decreasing and is an easy-to-use failure rate function whgnthe number of failures
per time unit is known from practice and the failure rate teipendent of age.

The mean-time-between-failure (MTBF) that one often entexs in literature, is the
average time between failures. When the failure rate istaahghe MTBF is simply the
reciprocal of the failure rate.
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(a) Bathtub curve. (b) Negative exponential curve.

Figure G.1: Hazard rate curves.
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G.0.8 Exponential distribution

The exponential distribution is the continuous analog efdiscrete geometric distribu-
tion. It is used to model Poisson processes (Poisson, 188&)exponential distribution
can be used as a good approximation model to estimate thetimieich a next incident
occurs. In queuing theory, the inter-arrival times (i.lee times between customers enter-
ing a system) are often modeled with random variables tlea¢x@ponentially distributed.
The exponential distribution can be a good choice for modetlihe arrival time of inci-
dents. However, note that the right choice for a distribugwentually depends on the
problem at hand and can best be determined by examininga&al d

The probability density functiorfi(t) of an exponentially distributed random variable
X, where constam denotes the average number of failures per time unit, andutinel-
lative distributionF (t) are defined as:

() - {)\e_)‘t o<t
0 t <0, and

1—e? o<t
F(t) =
(® {O t<O.

The exponential distribution is used in the model to gemetiate-windows for in-
cidents. The start of this time-window is called tfalure time and the length of this
time-window is referred to as thepair time of the resource. The failure times of all
incidents are assumed to be independent of each other. Eaagnt is assumed that a
resource performs like a new one after it has been repairedsdme applications that
assumption is not valid, in which more MTBF theory can be egublfor example, by
increasing thel value dynamically in situations where it is more and moreliikfor a
resource to malfunction the more times this resource hasie#functioning in its recent
history.

The expected failure time of a resource and its variancedodom variableX that
has an exponential distribution are given by

E[X] = /\1, and
Var[X] = )\—12

The exponential distribution is said to Ibeemorylessi.e., the probability that no
incident will occur within the next ten minutes, given noiolent occurred in the past
half hour, is equal to the probability, for example, thatfingt incident occurred after ten
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tl 2 time —

Figure G.2: Generating arrival times of incidents by setecadjacent time intervals with
probability 1/A. The width of the boxes is the repair time. This process isatgd for
each resource.

minutes. FormallyP(X > 40| X > 30) = P(X > 10).

The importance of this method is that it avoids discretaathat could lead to unde-
sired artifacts. These undesired artifacts can occurnfgtance, when one uses running
intervals (with length equal to the repair time) and then dibresources, with probabil-
ity 1/A generate an incident during this time-window. The probleith whis approach,
sketched in Figure_Gl.2, is that, at different infrastruettesources, incidents often occur
at exactly the same times, which is simply not so realistat @munnecessary simplifica-
tion.

In real world scenarios, the constraint that there/afailures per time unit is rarely
satisfied. That, however, does not render this approacksseDne approach is to focus
on a more specific time interval, such as peak hours verses$ hours, where the con-
straint is more or less (locally) satisfied. Another apphoiado combine several incident
models with differenfA values together.
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Appendix H

Planning Domain Definition Language
(PDDL)

PDDL - the Planning Domain Definition Language, which can &ensas successor to
STRIP@, has set a standard language for planning domains used bypteaming tools.
The language is particularly interesting to the settindhef thesis, because in some com-
petitions benchmarks were generated that contained proiristances for logistic do-
mains.

The original version of the language (PDDL 1.7) was devaldpeDrew McDermott,
with the help of the 1998 Planning Competition committeehi€a Bacchus selected a
subset of the original language as the language for the 20@@etition. To result in the
2002 version (PDDL 2.1) Maria Fox and Derek Long extendeddhguage with time
and objective functions. In 2004 (PDDL 2.2) derived pretisaand timed initial literals
were added. The most recent competition known at the timeigfatriting is PDDL 3.0,
used in the 2006 competition (Gerevini and Lang, 2006). is¥krsion first suggestions
for constraints and preferences, expressed in a restteteporal logic, were added.

Figure[H.1 gives an example of the planning domain definitéamguage, taken from
the fifth International Planning Competition (IPC 2006) teokat the International Con-
ference on Automated Planning and Scheduling in 2006. Howtéwpret the different
building blocks of this example is described in Yannis Dimlus and Saett! (2006). Af-
ter specifying the name of the problem instance and the dormatarts with listing the
objects in( : obj ect s) , several trucks, packages, locations, and truck areask am
eas represent the loading space of the trucks. Subsequeritlyi ni t ) , the initial state
isgiven.(free al truckl) denotes that truck aresl of trucktruckl is empty
and(cl oser al a2) means that truck aresl is closer to the door of the truck than

ISTRIPS (Stanford Research Institute Problem Solver) isuaon@ated planner invented by Richard
Fikes and Nils Nilsson in 1971. The same name was later usedetoto the formal language of the inputs
to this planner.
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truck areaa2 and, hence, truck aregl must be empty if something is loaded or unloaded
into truck areaa?2.

The goal stat€ : goal ) specifies that the three packages must be delivered to the
correct destination locations and then(inconst r ai nt s) the trajectory constraints
are specified that should be valid all the way (while the géatlesshould be met at the
end). Inside thg : const rai nts) tag there are several preferences. Those are soft
constraints that are desired to be satisfied, but not nedgssehe objective function,
specified in( : met ri ¢) uses these, multiplied to a number indicating the prioritthe
particular preference.

In the specification of the domaifr ucks- Conpl exPr ef er ences, which is
omitted here, it is specified that there are four actionead, unl oad, dri ve and
del i ver . Here itis also specified that a load or unload action can belgerformed in
a truck area if all truck areas closer to the door of the truekesmpty.

On the homepage of McDermott it is stated that Opt — Ontologl Wolymorphic
Types — is a successor to PDDL. Opt includes durative aGtimm®nomous processes,

a completely revised hierarchical planning notation andoaennobust type system. Mc-
Dermott further promised that soon Opt will include all f@&s that PDDL 3.0 has.
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(define (problemtruck-1)
(: domai n Trucks- Conpl exPr ef erences
(:objects

truckl - truck
packagel - package
package? - package
package3 - package
I1 - location

|2 - location

I3 - location

al - truckarea

a2 - truckarea)

(:init
(at truckl |2)
(free al truckl)
(free a2 truckl)
(closer al a2)
(at packagel | 3)
(at package2 | 3)
(at package3 | 1)

(connected 11 12)

(connected 11 13)

(connected 12 11)

(connected 12 13)

(connected 13 11)

(connected 13 12)

(= (drive-tinme 11 12) 406.3)
(= (drive-tinme 11 13) 73.1)
(= (drive-tinme 12 11) 406.3)
(= (drive-tinme 12 13) 356.8)
(= (drive-time 13 11) 73.1)
(= (drive-tinme 13 12) 356.8))

(:goal (and

(delivered packagel | 1)
(delivered package2 |2)
(delivered package3 12)))

(:constraints (and
(forall (?p - package ?t -
t ruck)
(preference plA (al ways
(forall (?a - truckarea)
(inply (in ?p ?t ?a)
(closer ?a a2) )))))

(preference plB
(somet i me- before
(delivered package2 |2)
(delivered packagel 11)))

(preference p4A (within 919.7
(delivered packagel 11)))

(preference p4B (within 919.7
(delivered package2 |2)))

(preference p4C (within 1813.7
(delivered package3 |2)))

(forall (?p - package)
(preference p2A (at-nost-once
(exists
(?t - truck ?a - truckarea)

(in?p 2t ?a)))))))

(:metric mnimze (+
(» 1 (is-violated plA))
(» 1 (is-violated plB))
(*» 2 (is-violated p2A))
(* 4 (is-violated p4A))
(* 4 (is-violated p4B))
(» 4 (is-violated p4Q))))
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Figure H.1: PDDL (version 3.0) exampile uck- 1 from Truck domain (IPC 2006) with
complex preferences. Preferences are specified withiq:thenst r ai nt s) tag and the

objective function within the: met ri c) tag.
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Appendix

The test set

The test set is a set of problem instances designed for trexiexgnts. To compare, for
example, two different planning methods, those planninghods can be run for each
problem instance within the test set. A problem instancesisté0f a transport network,
a set of operational agents, a set of transportation resjuastt a model (or a set of)
incidents. How these individual components are chosendsrieed in this section. At
the end, attention is paid to the relevance of the test set.

.1 Experimental setting

In this section information is provided that is indisperisai® anyone who desires to
reproduce the experiments presented in the sequel of tapteh Reproducibility

Each experiment consists of a set of simulation runs wRRALAS. These individual
runs differ in several ways. The selected problem instabnosists of a set of transporta-
tion agents, a set of tasks, the transport network, and ttident model. The chosen
operational planning method is part of the definition of aardgn the problem instance.
A problem instance is a single element from the test set,lmisidescribed in the subse-
quent section.

Furthermore, simulation runs are affected by environniesgitings. TRAPLAS,
which of course is based on the model described in Chaptera8highly parametrized
simulation tool.

Take over If take over is not allowed then all drive actions of trangpesources com-
plete in order. Hence, without take over, faster transpsbdurces sometimes have
to wait for slower transport resources. In these experiseake over is allowed.

Arbiter policy If agents use faulty planning methods, or plans are rendefedsible
due to incidents, there is always a fallback to simple resowsage rules. In
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these experiments first-in-first-out is chosen as arbitdicyganeaning transport
resources enter a resource in the same order as they anddbeoedesire to enter
the resource.

Shortest path planning There are many shortest-path algorithms. Mostly, they aae-g
anteed to produce the optimal shortest path and in that bag®tly differ in com-
putation time. In case reservations are considered, howeesituation changes.
The complexity increases, which can intuitively be und®ydtby recognizing that
now it matters at what time a resource is entered and optiathkgan now contain
cycles.

Accepted penalty The maximum negative change in individual performance ficaagent
to still accept the task. This value might also be negativethkese experiments
a value of zero has been used, tasks are not accepted by thts ageing task
(re)allocation if the difference in performance (given gedected performance in-
dicator) between the new plan and the old plan is positive.

Task limit The maximum number of transportation requests that canlsineously be
assigned to an agent. In these experiments, the task liset i® five. This is done
to avoid that a single agent can disturb the system by acgeptl tasks, and to
speed up some methods (e.g., the insertion method for teslaabn is quadratic
in the plan length of an agent).

Seed valuelf two simulation runs use the same seed value for the randemergtor,
then each time a random number is asked for the same numbenésaged. In
these experiments, a random seed value is chosen each tiroagather things
based on the system clock. This option allows for exact dyrible simulation
runs.

1.2 Network topologies

In Section?? several network topologies have been described. Thosededlrandom
(but connected) networks, which can in fact represent anyefother network types.
However, because only a small finite number of simulatiors rcem be done within ac-
ceptable time, it is not a good idea to use random networks dlamely, a large number
of networks would be required to have a representative sedi$port networks in the test
set. Therefore, networks are generated of each networkagype including the random
topology (in fact, even three different methods were useapkteerate random topologies).
To make the comparison as accurate as possible, where leabslabove generated
networks all have the same number of infrastructure regsuand arcs. Of course, a
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regularn x n grid network has exactlyrgn— 1) arcs. That is why diagonal arcs have
been introduced. For each grid cell (four resources thatraee cycle) one diagonal
(out of two possibilities) might be added, adding a maximuntne- 1)2 additional arcs.
This (limited) flexibility to select the desired number otsufor a grid network makes it
possible to create a network that has the same number ofssacSraall-World network. A
Small-World network witm? infrastructure resources (where each resource is corthecte
to its neighbors and the neighbors of its neighbors, kes,4) has 22 arcs and 8% —
4n+1> 2n? for n > 3. On the other hand, for tree networks, the number of edges is
alwaysn— 1, so comparison must still be done carefully. Besides thgstnetic transport
networks, the problem instances also contain some netwosksred by real-life, for
instance, the Sealand terminal, the underground logigstemn (OLS), and a network
resembling the taxiways at Schiphol Airport have been idetl

When the set of infrastructure resources and the set of ctingearcs is known, the
properties of each infrastructure resource must be coregideAmong these are the ca-
pacities of the infrastructure resources. In Sedtion Bt2vhs assumed that all transport
resources initially start in a resource with sufficient aafya This is done for simplifica-
tion. If it would have been allowed, transport resourceshnitave to move to a resource
with sufficient capacity in order to give way to other trangpesources, or else, in the
worst case, the system is prone to deadlocks. The more mEsoilnere are with sufficient
capacity, the more easy it is for transport resources togeds other. Again, for an accu-
rate comparison it is desired to have about the same numlresodirces with sufficient
capacity for the different transport networks. Either thessources were chosen at ran-
dom or the endpoints of the diameter were chosen (then, thgoants of the next longest
path, etc). These resources are also used as pick-up amdrgeksources, such that, if
a transport resource finishes a task by unloading at thendéistn, there is no need for
transport resources to route to a resource with sufficigraady.

Finally, the maximum allowed driving speed and the distaaeto be specified.
These are of course related. In the experiments the maxiniaweal driving speed was
set to 1, and the distance was drawn from a normal distribwibh meanu = 10 and
standard deviatioor = 1.

1.3 Agent behavior

Planning is considered part of the behavior of an agent girout this thesis. This means
the methods used for task allocation and the planning methedd to compute a route
and a schedule for the plans of the agents are consideredf@rbehavior.

Two different approaches are used to assign tasks to ag@&hes first approach is
vehicle-orientedthe secondiask-orientedIn the vehicle oriented approach, new tasks are
announced by the customers by putting them on a blackboasb(oe other information
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system, the idea is just that the agents are informed abauhéw task). Any agent,
who happens to be looking for a new task, can check this btankband retrieve tasks
from it. At the moment an agent pulls a task off the blackbpd#rdés assigned to this
agent and others cannot see it anymore. This operationnsi@ato avoid the situation
where multiple agents think they have been assigned the s&skelncoming tasks are
assigned one by one to the agents sequentially, while thesagensider adding new tasks
in parallel.

For thetask-orientedask allocation, a well-known auctioning protocol, the Rriey
auction, is used. An auction is held for each incoming transpion request. Again,
this is done one by one sequentially. Each agent computes fibihis transportation
request and it will be assigned to the agent with the highiestThis agent has the pay
the amount of the second highest bid. It can be proven foratincsioning protocol that
the best strategy for an agent is to bid his true value. Itccoely well be that agents
are more interested in some tasks given that they will alss@®me other tasks. In other
words, what an agents wants to bid for a certain task can depenvhether it wins the
auctioning for some other task. This dependency betwediagds taken into account
in the field of combinatorial auctions (Sandholm, 2002),chkhis beyond the scope of this
thesis.

Furthermore, three different types a€ceptanceof new tasks are used. There are
agents that only accept positive reward for the transportaasks they execute. They
will not accept tasks to have a negative reward when they ssig@ed to the agent nor
will they ever accept a situation where it is expected thiewal lead to a negative reward.
If such a situation occurs, e.g., due to incidents, the fraration task will be dropped
immediately. The second type of agents are a little lessistdfested. They also do not
accept transportation tasks with a negative reward, tholigywill continue to execute
tasks that lead to a negative reward later, possibly duectdents. Then, there is a third
category consisting of agents that accept everything. & hes most useful in situations
where each task must be executed. Transportation tasksecasslgned to those agents
even if it is known in advance that the agent will receive aatieg reward even if no
incidents at all would occur.

Unless explicitly mentioned the experiments are performvéd 32 agents. Each of
these agents uses the same planning method, which is vameedidferent simulation
runs. TRAPLAS is able to keep the rest of the environment completely idahtsuch
that the results can be compared to each other. Additigmalked strategy experiments
are performed. In these experiments, the 32 agents areedivitio four groups of eight
agents. Here, the members of the same group use the sammglarethod. This is done
to investigate whether there are dependencies betweerffégrext planning methods and
to see whether itis true that the best performing planninthods are still performing best
in case there are other agents in the system that use otineinanethods.
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|.4 Transportation requests

For each network topology, ten different instances aretedefor 32 transport resources
with five tasks per agent (request load of 160). Then, ingtsuace merged together to
create a higher request load, as is described later in tti®se

Algorithm [?7 describes a way to generate problem instances, suck{ixhgtimal
system welfare gained by executing a set of optimal planaasvk and(ii) the instances
look reasonably realistic (e.g., there must not be a hugesatrd idle time in the optimal
plans or other trivialities).

To compare the planning methods to the best possible peafure; best possible per-
formance must be known. That is not possible for sufficielgthge arbitrary problem
instances due to the complexity of the problem. The follgnitechnique is used to over-
come this problem: instead of computing the optimal perforoe for a problem instance
(which can only be estimated, and not even precisely), aoranglan for each agent is
generated. Subsequently, this is used to compute a prohktemce. The interesting part
is that it is ensured that the generated plan is an optimalyith respect to the generated
problem instance. This is always the case if (but not onlthi€) following conditions are
true:

1. the route driven by the agent from pick-up to delivery taahas minimal costs.
There does not exist a faster path and there is no waitingitirties plan,

2. the realized loading and unloading time-windows maxartize rewards of the
transportation requests,

3. an agent being idle has zero cost.

Because the transport resources move along shortest pathssburce to destination
of their transportation requests and they gain maximum e the execution of the
request, these plans are likely to be optimal. The only elwejs when the agents have
a loading capacity greater than one and by combining trategmn requests they can
decrease their driving costs more than the rewards decdegsto violation of the time-
windows of the transportation request. The latter is notddse in these experiments,
because the loading capacities of the agents are set to one.

The task-generating agents select a new destination Estareach task at random
in Algorithm[?%. An unfortunate choice here could lead to more idle time englans of
the agents, hence fewer transportation requests per timeltwere is room for some im-
provement by considering several alternative destinagsources. In Figuie 1.1 the idle
times of the test set are shown, and those instances arelecgsiwell enough already.

Setting the task limit or time limit to a greater value ingeathe number of generated
transportation requests, but it does not increase the setpsel computed as the number
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Agents generating transportation requests.

1. procedure GENERATEREQUESTS

2 Simulation time < t.

3 Generate a new requestwith as source the current infrastructure resource.

4: while both time-limit and task-limit not yet reacheld

5 Set loading time-window t@} < [t,t + loadingtimeo; )]

6 Compute the sdd of potential delivery resources, agent must be able to drive
there without any delay

7 if D # @ then

8: Pick a random destinatiahfrom D and place the agent there.

o: t —t+loadingtimé€o;) + drivetimgo;)

10: Set unloading time-window tojpl «— [t,t+unloadingtiméo;)]

11: t «— t +unloadingtiméo;)

12: Add requesb; to the set of transportation requests.

13: Generate a new request with as source the current infrastructure re-
source.

14: else

15: t <t +1t;, wheretc is the minimal non-zero duration of all conflicts en-
countered in Lin€l6 (agent is idtgtime units).

16: end if

17: end while
18: end procedure

of transportation requests per time unit. Therefore, antiaddl technique is used to
create problem instances of a higher request load. Thisie g merging transportation
request files. An upper-bound on the optimal performancé®hterged instance is the
sum of (upper-bounds of) the optimal performances of thividdal instances.

Reward functions The reward function, which can be different for each sepdarans-
portation request, specifies the reward the agent gets éoessfully executing the trans-
portation request. The reward for a transportation reqseste sum of the reward for
loading and the reward for unloading the freight.

The reward typically is maximal when the loading or unlogdavent takes place
within the specified time-window. When the loading or unlogdevent is too late, the
reward either is zero immediately, or decreases accordisgrne function. Furthermore,
if the loading or unloading event is too early, there migsbdle a drop in reward. For ex-
ample, when trucks arrive too early to deliver their goods stipermarket, they consume
parking space close to the supermarket that temporarilyatdre used by other trucks.

In case a function is used that has a global maximum (e.g.riadmbally asymp-
totic function), there exists an easy upper-bound on thal teward that is the sum
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Figure 1.1: Idle times in the optimal plans for ten arbitrargnsport networks for each
topology.

of these global maxima of each transportation request. Blesof such reward func-
tions are a constant reward (e.g., zero outside the desmadwindows and a constant
within the time-windows), a summed arctan (too late resultdecreasing reward, but
never more than the horizontal asymptote), linear distantside the time-windows,
or the gamma distribution. The latter, illustrated in Figili2, is used in the exper-
iments. In case loading or unloading starts too early at timelowerboundr) and
too early is considered of equal importance as too late tittnis can be transformed to
upperboundr) + (lowerboundt) —t) to compute the reward.

.5 Incidents

Anincident(r, 7,i) is defined by specifying @source r either a transport resource R
or an infrastructure resouraes R"", animpactfactor 0< i < 1, for which (1—1i) is
multiplied with the allowed speed at or maximum speed of #source, dime-window
T € W during which the incident is in effect and itslease timethe time at which the
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Gamma distribution, alpha=1, theta=1, Gamma distribution, alpha=1, theta=1,
gamma=0.5, 0.04, T=[0,100), profits=100. gamma=0.5, 0.04, T=[0,100), profits=200.
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Figure 1.2: Example of the Gamma distribution reward fumeti The figure illustrates

a = 0 = 1, simplifying toRewardt) = profits-ex;n(_'at%jﬂff(z)) for lateness> 0.

incident is known to the system. If the release time is sméflen the start of the time-
window, this means the system knows in advance the inciddirtiake place; the release
time is never greater than the start of the time-window.

As already stated in Sectign 3.11.4, the effective time-wimsl of incidents are often
modeled using the Mean-time-between-failure (MBTF) applo As an example, let us
model a resource that malfunctions 10% of the time, pe=,0.1, with an average repair
time of 3. Recall the probability density functidi{t) and cumulative distributiofr (t)
that belong to the exponential distribution, see Se¢fidm3.

This means there is on average one failure in thirty timesyné., the average number
of failures per time unif equalss—lo.

The total area below the probability density function iscotirse, equal to 1. What
we want is to compute the next start time for an incident atiogrto the probability
density function. Therefore, we start by taking a list ofdam numbers irf0,1), say
N = (0.254,0.928 0.498 0.529,0.139). Now let each random number correspond to the
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fraction of the total area below the probability densitydtian before the start time of
the incident. To compute the starting timéor all random numbers € N the following
equation is used.

rf(t)dt:n -
FX-FO) =n <

o

1-eM=-n =
_In(1—
XZM A#0An<1

ThisyieldsL = (8.791,78.933 20.67522.587,4.490). List L now denotes subsequent
times between intervals. Finally, from this list we can Basompute the time-windows
of the incidents: these ar8.79111.791), [90.724,93.724), [114.398 117.398),
[139985142985), and [147.475,150475) respectively. Five incidents of length 3 in
approximately 150 time units indeed corresponds to a resomalfunctioning 10% of
time. Note that the repair time does not have to be constartalvincidents.

To measure the incident level the following function, thains the product of impact
and duration of each incidents, is used:

incident level= )’ i- (ub(t) —Ib(1)).

(r,T,i)eZ

For the experiments the failure probability was varied frorto 0.2 (20%) and the
repair time was drawn from normal distribution with= 400 ando = 50. The reason
behind this was previous research of Maza and Castagnal)(2@bsome tests done to
repeat this. Samia and Castagna report that with frequeidiants that have a short repair
time there are no significant differences between theiedbffit planning methods. This
also holds for the methods in this thesis. They claim thatwthe failures are frequent
and short, they are mutually compensated. The methodssithisis that consider rerout-
ing the vehicle will not find much of an improvement as the e&hwill also be bothered
by incidents along all alternative routes.

.6 Relevance

The set of problem instances that are used for the experintlerdughout this thesis is
synthetic. Although attempts were made to have the prob&mesemble reality as much
as possible concerning many aspects, this possibilitynagplg the data, was not always
available. Nevertheless, it is conjectured that the setroblpm instances is realistic
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incidents (i.e., the time it is known to the agents). Thisadatgenerated like described
in this section, with failure probability 0.1 for all 32 trgport resources, but with a repair
time (and time known in advance) drawn from a normal distrdyu
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enough to be of practical importance.

To start with, the transport networks include some realiststances. There is the
network resembling the Sealand terminal, the undergroagustic system (OLS), and
the Schiphol airport network. For the rest of the transpetivorks, an attempt was
made to generate many networks of several well-known strest(grid networks, small-
world networks, etc.), but also to generate many randomarismo see the effect of the
network structure on the performance of the system.

Both the task request load and the density of incidents ared/&iom light to extreme
circumstances. Although it would be impossible to look &paksible situations, simply
because there are way too many, the experiments are focustte anost interesting
things that were encountered.

Finally, the model is quite general. It includes many dsté#ilat can be tuned to a

real-life application domain. For example, overtakinghiete capacities, per task reward
functions, etc.
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Appendix J

Model detalls

Table[J.1 and_J.2 list the coefficients for the models M1 andrégpectively that are
described in SectioR? and5.3.8. The first column lists tifizconstants to be filled in in
the formula provided in the table caption. The variable Useds a dummy encoding: 1
if methodm is used, 0 otherwise. If Uséah) = O for all methodsm, the method used is
the one not listed in the table; this method is thvecA method for both tables.
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Estimate Std. Error tvalue  Px(t|)
(Intercept) 8.27e-01 2.84e-03 2.91e+02 0e+00
Used(Classical) -7.57e-01 4.02e-03 -1.88e+02 0e+00
Used(RR random) 8.58e-03 4.07e-03 2.11e+00 3.5e-02
Used(RP random) -4.51e-02 4.03e-03 -1.12e+01 6.46e-29
Used(RR delays) 9.42e-03 4.05e-03 2.32e+00 2.0l1le-02
Used(RP delays) -5.86e-02 4.03e-03 -1.45e+01 1.76e-47
Used(RR deadlines) 1.20e-02 4.02e-03 2.99e+00 2.81e-03
Used(RP deadlines) -4.46e-02 4.03e-03 -1.11e+01 2.30e-28
Used(RR profits) -1.32e-03  4.08e-03 -3.23e-01 7.47e-01
Used(RP profits)  -6.4e-02  4.04e-03 -1.59e+01 4.5e-56
Used(RR wait) 1.04e-02 4.05e-03 2.57e+00 1.03e-02
Used(RR wait 10% slack) -2.29e-02 4.05e-03 -5.66e+00 1089e
Used(RR wait 20% slack) -5.15e-02 4.04e-03 -1.27e+01 6343e
Used(RP wait) -2.76e-02 4.03e-03 -6.86e+00 7.44e-12
Used(RP wait 10% slack) -5.62e-02 4.04e-03 -1.39e+01 94@8e
Used(RP wait 20% slack) -8.76e-02 4.03e-03 -2.18e+01 5103e
Used(RRtask) 1.53e-02 4.04e-03 3.78e+00 1.56e-04
Used(RP task) -3.93e-02 4.03e-03 -9.74e+00 2.38e-22
Used(RR invtask) -3.76e-03 4.08e-03 -9.21e-01 3.57e-01
Used(RP inv task) -5.36e-02 4.03e-03 -1.33e+01 5.13e-40
request load -1.26e-03 7.6e-06 -1.66e+02 0e+00
Used(Classicakrequestload 1.16e-03 1.08e-05 1.08e+02 0e+00
Used(RR randomyrequest load 8.03e-06 1.1e-05 7.3e-01 4.65e-01
Used(RP randomyrequestload 3.51e-05 1.08e-05 3.24e+00 1.20e-03
Used(RR delaySyrequest load -1.30e-05 1.09e-05 -1.20e+00 2.32e-01
Used(RP delaysyrequest load 2.04e-05 1.08e-05 1.88e+00 6.02e-02
Used(RR deadlinesyequest load -1.50e-05 1.08e-05 -1.39e+00 1.63e-01
Used(RP deadlinesyequestload 4.41e-05 1.08e-05 4.07e+00 4.64e-05
Used(RR profitsyrequest load 1.83e-05 1.11e-05 1.65e+00 9.81e-02
Used(RP profitsyrequest load 7.57e-05 1.08e-05 6.98e+00 3.00e-12
Used(RR waitxrequest load 4.85e-05 1.09e-05 4.44e+00 9.01e-06
Used(RR wait 10% slackrequestload 2.13e-05 1.09e-05 1.96e+00 5.05e-02
Used(RR wait 20% slackrequest load -6.38e-06 1.08e-05 -5.88e-01 5.57e-01
Used(RP waitxrequestload 8.98e-05 1.08e-05 8.31e+00 1.05e-16
Used(RP wait 10% slackyequest load 5.65e-05 1.08e-05 5.23e+00 1.76e-07
Used(RP wait 20% slackyequest load 3.26e-05 1.08e-05 3.02e+00 2.56e-03
Used(RR taskYrequestload -1.73e-05 1.09e-05 -1.59e+00 1.12e-01
Used(RP taskjrequestload 5.63e-05 1.08e-05 5.2e+00 2.04e-07
Used(RR inv taskYrequestload 1.93e-05 1.11e-05 1.73e+00 8.3e-02
Used(RP inv taskjrequest load 6.03e-05 1.08e-05 5.57e+00 2.54e-08

Table J.1: The coefficients for Model M1z = By + B1W + M + BsWM. Variable

Used(method) is 1 if the specified planning method has beet, and O otherwise.
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Estimate Std. Error tvalue  Px(t|)
(Intercept) 4.28e-01 6.09e-03 7.02e+01 0e+00
Used(Classical) -3.83e-01 8.62e-03 -4.45e+01 0e+00
Used(RR random) 7.48e-02 8.7e-03 8.6e+00 9.11e-18
Used(RP random) 3.08e-02 8.61e-03 3.58e+00 3.43e-04
Used(RR delays) 6.3e-02 8.7e-03 7.25e+00 4.52e-13
Used(RP delays) 1.59e-02 8.63e-03 1.84e+00 6.61le-02
Used(RR deadlines) 6.95e-02 8.62e-03 8.06e+00 8.27e-16
Used(RP deadlines) 3.42e-02 8.64e-03 3.96e+00 7.69e-05
Used(RR profits) 5.91e-02 8.77e-03 6.74e+00 1.63e-11
Used(RP profits) 1.96e-02 8.65e-03 2.27e+00 2.34e-02
Used(RR wait) 8.3e-02 8.66e-03 9.59e+00 1.07e-21
Used(RR wait 10% slack) 6.55e-02 9.03e-03 7.26e+00 4.B3e-1
Used(RR wait 20% slack) 2.94e-02 9.02e-03 3.25e+00 1.B4e-0
Used(RP wait) 5.78e-02 7.49e-03 7.73e+00 1.19e-14
Used(RP wait 10% slack) 3.93e-02 9.05e-03 4.35e+00 1.89e-0
Used(RP wait 20% slack) 6.82e-03 9e-03 7.59e-01 4.48e-01
Used(RR task) 7.05e-02 8.64e-03 8.16e+00 3.66e-16
Used(RP task) 3.59e-02 8.64e-03 4.15e+00 3.31e-05
Used(RR inv task) 5.5e-02 8.72e-03 6.31e+00 2.92e-10
Used(RP invtask) 2.98e-02 8.64e-03 3.45e+00 5.53e-04
incidents -7.48e-04 1.37e-05 -5.45e+01 O0e+00
Used(Classicakincidents 7e-04 1.95e-05 3.59e+01 5.81e-268
Used(RR randomyincidents -1.36e-05 1.97e-05 -6.92e-01 4.89e-01
Used(RP randomyincidents 6.81e-05 1.95e-05 3.50e+00 4.75e-04
Used(RR delaysjincidents -2.12e-06 1.96e-05 -1.08e-01 9.14e-01
Used(RP delaysjincidents 8.45e-05 1.95e-05 4.33e+00 1.51e-05
Used(RR deadlines)ncidents -1.38e-05 1.95e-05 -7.1e-01 4.78e-01
Used(RP deadlinegjncidents 4.77e-05 1.96e-05 2.44e+00 1.47e-02
Used(RR profitsyincidents 5.57e-06 1.98e-05 2.82e-01 7.78e-01
Used(RP profitsyincidents  7.66e-05 1.95e-05 3.92e+00 9e-05
Used(RR waitxincidents -3.64e-05 1.96e-05 -1.86e+00 6.31e-02
Used(RR wait 10% slack)incidents -4.33e-05 2.09e-05 -2.08e+00 3.79e-02
Used(RR wait 20% slack)incidents 2.31e-05 2.08e-05 1.11e+00 2.66e-01
Used(RP waitxincidents 6.14e-06 1.69e-05 3.62e-01 7.17e-01
Used(RP wait 10% slack)incidents 1.51e-05 2.08e-05 7.27e-01 4.67e-01
Used(RP wait 20% slack)incidents 6.3e-05 2.09e-05 3.01e+00 2.58e-03
Used(RR taskYincidents -1.31e-05 1.95e-05 -6.72e-01 5.02e-01
Used(RP taskjincidents 5.44e-05 1.95e-05 2.79e+00 5.26e-03
Used(RR inv taskYincidents 2.01e-05 1.97e-05 1.02e+00 3.07e-01
Used(RP inv taskjincidents 6.41e-05 1.95e-05 3.28e+00 1.03e-03
Table J.2: The coefficients for Model M4u = By + Bii + Bm + B2ifBm. Variable

Used(method) is 1 if the specified planning method has beet, asd O otherwise.
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Appendix K

List of hypotheses

Throughout this thesis several hypotheses were presentesde were supported or fal-
sified using empirical evidence gained from the experimdasribed in Chaptét 5. For
convenience, these hypotheses are listed here.
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Red thread

Classical approaches to operational transport planniegt fplanning separately from
conflict resolution, thereby seriously affecting traveddictability aspects, even under
incident-free conditions. Many researchers attemptechfiwove with MIP formulations,
but those turned out not sufficiently scalable for realigtimblems at the operational level.
Furthermore, there have been developments in shortdsiafiaarithms, where planning
and conflict resolution is integrated. Thesmntext-awareouting algorithms seem aban-
doned because of their high cost in computation time.

In this thesis, we aim to design and evaluate a distributguicaeh, based on im-
proved context-aware routing. By means of this method ptahblility of travel plans can
be greatly enhanced under incident-free conditions. Budetiiog uncertainty and inci-
dents are present in any real-life situation. Therefor@rder to improve the robustness
and performance under incident conditions, special vegiaithe method are developed,
which enable us to deal with incidents and modeling unaastai

We developed a new framework that supports both the cldssp@oach as our
context-aware approach and its extensions such that thmepeceaompared. The frame-
work includes infrastructure agents that (locally) gudrd safety constraints of infras-
tructure resources. The infrastructure agents make adwal-approach possible. At the
first level, infrastructure agents compute reservatioas éne guaranteed to be safe (no
conflicts with other planned actions). At the second levahsport agents search plans
and they communicate with these infrastructure agents.

The behavior of the transport agents is largely determinethé planning method
they use. We developed a new multi-agent context-aware£) approach, which is
faster than its competitors. Subsequently, because oflitesaty order in which transport
agents create plans and the presence of incidents, thesextsmACA -RP andMACA -RR
are presented. We show positive examples illustrating #thads perform better in some
cases, though we do not provide theoretical bounds on theoirement.

Because we have shown that thecA approach not always outperforms the classical
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approach, we present an extensive set of experiments to etmpivical results. Due to
the many different parameters we want to control, we firstanede of a synthesized set of
problem instances. Next, we also experiment with airpoditrig on the Schiphol airport
network to illustrate that our methods also work on a realstample. The experiments
show thatMAcA indeed outperforms the classical approach. Furthermbeegxtended
MACA -RP andMACA -RR methods also significantly improve the performance, evéingn
absence of incidents.



Samenvatting

Nederlandse vertaling van Operational Transport Planning in a

Multi-Agent Setting

The problem setting is that there are a set of transportatiders with time windows both
for pickup and delivery. To travel over infrastructure nesees, an agent needs to claim
these resources. In case an agent wishes to reserve a eefatiner than simply planning
to go there and relying on social rules), it can see the raiens of other agents on all
infrastructure resources. A transportation agent alsdsieeload packages into its hold,
which has a limited capacity; at the destination locatiopaakage must be unloaded
again. The time of loading and unloading is associated wrgward function, and each
task also has a loading or unloading duration associatdditfih the TRAPLAS simula-
tor, at least). Currently, loading and unloading occur®eations that have (practically)
no capacity constraints.

Jonne extends the resource-based infrastructure modedtafiek and Nebel (HZN)
with the following: connectivity between resources a cayaaf a resource: in HZN,
all resources have unit capacity. Jonne also allows capsgteater than one. In his
TRAPLAS simulator, though currently not in his PhD, Jonreoalistinguishes between
infrastructure resources where vehicles can overtakeptorResources have a distance,
and a maximum speed, and vehicles also have a maximum spegdthé&r, these ele-
ments determine how long an agent will occupy a resource

Transportation resources (i.e., vehicles/agents) makesptonsisting of: a route,
which is a sequence of resources a schedule, which is a sggjtieTe points; these time
points may correspond to reservations the agent has matie abtresponding resour-
ces (it can also plan without reserving) a load function anduaload function, which
specifies the times at which packages are loaded and unloaspectively.

Like HZN, Jonne’s algorithms focus on operational (i.e.orgtterm) planning and
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scheduling. Unlike HZN, he does not assume that agents hsetdd unalterable routes
in advance; rather, planning which route to take is a key gidnts work (there is quite a
bit of background research on shortest path planning inasis). In addition, planning
and scheduling can be triggered as a result of new transiporiarders, or incidents in
the system. He proposes the following incident model: iectd arrive in the system ac-
cording to an exponential distribution. An incident is eitla communication incident or
a resource incident. A communication incident affects glsitransportation agent, and
prevents it from communicating with other agents for a dpetitime interval. Inability
to communicate means that an agent has to fall back to simptadination methods,
as it can no longer see the reservations on resources ofagkats [right?]. A resource
incident affects the maximum speed of a resource. In caseesioairce is a vehicle, this
is the maximum speed at which it can travel; in case of ansirfuature resource, it is the
maximum allowed speed that is reduced.

Chapter 4 distinguishes different types of methods for &dkdcation, planning, and
scheduling. Task allocation consists in assigning trartapon orders to agents. When
auctions are used, agents will bid on transportation oréid, if the right kind of auction
is chosen, an order should be awarded to the agent that hagytiest private value for
this order (however, if orders are auctioned off one by ohis, does not imply that the
optimal distribution of orders over agents will reached}tefative to using auctions is
that unassigned tasks are put on a blackboard, and as soomasgent decides it wants
that order, it can take it off the blackboard. If reallocatiof orders at a later stage is
possible, then the disadvantages of assigning orders tawtbeg agents’ is mitigated.

The planning scheduling of the agents consists of two sep@its: first, given a
partial plan to deliver a set of transportation orders, a oayer must be inserted some-
where in the 'visiting sequence’. Second, a route must bengld to and from the pickup
and delivery locations of the new orders. So, if the pickup ofew package at location
b is planned between visiting locations a and c, then a nete moust be planned from a
to b and from b to c, to replace the route from a to c. In TRAPLA®euristic is used
to determine where to insert a new order, but the insertiamewf orders is currently not
described in the thesis.

When an agent determines a route to deliver a (new) packagajst reserve the
resources on this route. To determine the best route betiweeiocations, the agents
make use of shortest path planning algorithms. This chapitonly describes some
of the research into the shortest path planning problentsdt presents an algorithm for
shortest path planning that takes into account resenatiat other agents have made.

When an incident occurs, agents have different optionsaxtiag to it (this is also
operational planning). The easiest is not to do any re-tenor scheduling, and rely on
social rules to resolve any conflicts between agents. Snded in this thesis are traffic
rules of a special kind, that determine which agents can goa#inen more than one agent
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contends for the use of a resource at the same time. The n@dégare divided into static
rules, such as FIFO or longest queue first, or they may makefudysamic information
that determines the priority of an agent. Assigning prjotit agents can be done using
commonly employed scheduling heuristics such as earlesstlthe first, or longest plan
first.

A more advanced method of dealing with an incident is to kéepatgents’ routes,
but to reschedule their use of the resources. This can batédtby an agent that is
unsatisfied with the level of resource availability, fortersce when it is trying to insert a
new order into its plan. Typically, all agents sharing sobwt{eneck) resources with the
requesting agent will be invited to participate in this ofaduling process, by throwing
away their current reservations. The possibility of alsplanning routes is mentioned
but not explored.

A final idea, that may be used for infrastructure analysigpiok at the level of
redundancy in a infrastructure network, that can be meddwyeounting the number of
alternative paths between two locations that differ at rrsest, 5% from the shortest path.
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