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Chapter1
Introduction

Transportation is among the strongest growing activities in our society. Reasons for the in-
crease of transportation are legion. Transportation costsdecrease while quality increases
(e.g., airplanes), leading to ever-growing demand for transportation. Not only the growing
number of people, but also behavioral changes lead to increasing demand for transporta-
tion. For example, existence of the Internet sets up easy world-wide communication for
organizations leading to globalization. Also, the growth of industry and the large amount
of supply on the market demands for bigger sized enterprisesthat have to organize their
transportation efficiently. At the same time, the growth of transportation renders our trans-
portation infrastructure, like roads, railways, harbors and airports, a scarce resource. Typ-
ically, however, plans to increase the transportation infrastructure either take a long time
to realize or are simply not realizable at all. As a result, there is an incredible amount of
effort in optimizing the process of both public and freight transportation using the current
transportation infrastructure as efficiently as possible.

One way to optimize the current use of transportation infrastructure is complete au-
tomation of transportation. This development started small by, for example, carrying
heavy materials at Corus by robots(Withers and Rijnsdorp, 1978), but is on the rise. In
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2 Operational Transport Planning in a Multi-Agent Setting

(a) Aerial view. (b) Quay cranes unloading a ship.

Figure 1.1: European Container Terminals (ECT).

1988, European Container Terminals (ECT) realized the firstever robotized container
terminal that caught world-wide attention (Konings et al.,2009). Automated Guided Ve-
hicles (AGVs) transport freight containers between quay cranes and stocking yard back
and forth. These AGVs are completely controlled and steeredby computer programs and
drive around 24 hours a day, using the existing infrastructure quite efficiently. Nowadays,
there are approximately 200 AGVs operational at ECT. Challenges at ECT are to know
at all times where containers are exactly located (often techniques with radio frequency
identification numbers (RFID) are used to accomplish this),how to stack these containers
in the stock yard (if you would need a container soon, you would not want to stack a few
others on top of it) and in general how to process the freight (loading or unloading ships,
trains, and trucks) as fast as possible (see Figure 1.1).

At the moment of writing, plans are developed to create an underground logistic sys-
tem (OLS) at Schiphol international airport. This pipe-line connects the flower market of
Aalsmeer, Schiphol airport, and a new rail-terminal in Hoofddorp to each other. Feasibil-
ity studies on this project are not very positive on short terms, though estimate that such
systems become more and more important in the future(Verbraeck and Versteegt, 2001).

Also in public transportation we see the birth of automation. The idea of automated
driving dates back about 70 years, when General Motors presented a vision ofdriver-
lessvehicles moved under automated control at the 1939 World’s Fairs in New York
(Rodney K. Lay, 1996). According to Cheon (2001), researchers began to consider poten-
tial uses of computers in traffic management. The fully automated highway was initially
examined by General Motors during the late 1970s. Due to the advances in comput-
ing technologies, microelectronics, and sensors in the 1980s, the University of California
Partners for Advanced Transit and Highways (PATH) program has carried out significant
research and development efforts in highway automation since the 1980s. Furthermore, in
1994 the U.S. Department of Transportation launched the National Automated Highway
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System Consortium (NAHSC) to fund long-term research on Automated Highway Sys-
tems. These techniques could ensure a more efficient use of (high)ways by allowing cars
to operate in so-called platoons, driving at a very close distance from each other, thereby
increasing the capacity of highways.

Europe does not stay behind in automated transportation. For example, in Paris, under-
ground railway is partly automated. Control of subways is relatively easy due to driving
on rails and no interference with other (human) traffic.

The automobile industry in the late nineties introducedAdaptive Cruise Control.This
system attempts to increase the comfort of a driver by automatically adjusting speed to the
direct successor based on distance sensors. Due to the introduction of vehicle-to-vehicle
communication, the system could be improved to react fasterand more smoothly. There
is still a lot of ongoing research in the area ofCo-operative Adaptive Cruise Control,
for instance on the effect of this system on the traffic throughput (van Arem et al., 2006;
Laumonier et al., 2006).

Although these automation processes are promising, success of this new technology
is heavily depending on public acceptance. Furthermore, there are difficulties here of
ethical grounds, e.g., who is to blame if a collision occurs?On the other hand, there are
technological advances that can more easily be accepted by the public, like (dynamic)
route navigation systems that, for now, could advise only and perhaps later take over
human control.

Automation in transportation does not need to be restrictedto the automation of the
real-time control of (groups of) vehicles. Often, careful planning of transportation pro-
cesses is as important in increasing the capacity of the infrastructure. The classical ap-
proach in automating transportation processes, however, has focused on planning and
real-time control as two separate areas. In this thesis, first of all, we will propose an
integrated approach to automation of transportation processes by discussing a so-called
context-awareplanning approach, where planning takes into account not only the route
of a single vehicle, but the already planned routes of other vehicles as well. In this way,
ideally, if the plan is executed there is no further need for real-time control or conflict-
resolution, since everything has been taken care for in the context-aware planning phase.

Typically, a contex-aware planning approach takes existing plans into account by con-
structing a route plan for an individual vehicle. Such a route plan consists of a sequence of
(time limited) reservations of parts of the infrastructure, such that conflict-free execution
of the plan can be ensured if every one is able to execute his plan correctly.

In this thesis we first of all contribute to the context-awareplanning approach by
improving the efficiency of existing systems in a significantway and by empirically in-
vestigating alternative ways for determining infrastructure reservations, for example, by
not using a fixed first-come-first-serve allocation scheme, but also allowing for more so-
phisticated allocation schemes where the priority of vehicles is taken into account.
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Our second main contribution is in the investigation of the role of incidents on the effi-
ciency of automated transportation planning. Often in realistic scenarios there are certain
events that cannot be anticipated in advance and have a negative influence on the planned
activities leading to the necessity of replanning. We call these eventsincidentsand taking
incidents into accountincident management. Robust planning and replanning techniques
are required in situations where incidents occur regularly. To give some examples, for an
AGV terminal, incidents include malfunctioning communication with a vehicle, engine
problems, collisions. Also, changes in transportation requests – even adding new trans-
portation requests – can be viewed as incidents. Planning methods that suffer from per-
formance degradation when the number of disruptions increases render useless in many
realistic transport planning applications.

In this thesis we therefore focus on the performance of routeplanning methods when
there are incidents and compare context-aware approaches with classical route-planning
approaches.

The basic scientific problem area we are contributing to in this thesis is known as the
pickup and delivery problem. To give the reader a better idea of this problem area, its
development and our contribution, in the sequel of this chapter we will first describe the
basic ingredients of thel pickup and delivery transport planning problem Then we present
the main challenges in this domain and give an example. Subsequently, our approach,
research questions and contributions are presented.

1.1 Pickup and delivery transport planning

In pickup and delivery transportation planning, multiple actors (agents) each have to con-
struct a transportation plan for their vehicle and to ensurethat their set oftransportation
requestsis correctly executed. A transportation request is a customer’s request to deliver
freight (or passengers) from a pick-up location (the current location of the freight to be
picked up) to the delivery location (the destination of the freight).

Additionally, the customer provides several constraints on how he or she desires the
transportation request to be executed. The pickup and delivery must preferably be ex-
ecuted within correspondingtime-windows; a time-window is an interval of time. Fur-
thermore, the customer specifies areward function for the executor of the transportation
request based on these time-windows and the actual time at which the executor will per-
form the pick-up and delivery events. This reward function will obviously be maximized
if the time-windows for loading and unloading are not violated.

The executor of the request owns atransport resource. A transport resource is a
mobile entity like an automated guided vehicle (AGV), a truck, an airplane, a boat, or a
taxi cab. This transport resource can move around through the transport network. The
transport network defines both locations – at least all of thepick-up and delivery locations
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encountered in transportation requests – that can contain transport resources as well as
connections between locations. The transport network and resources together are referred
to as theinfrastructure.

The allocation of transportation requests to executors is called task assignment. Task
assignment can be aided byauctioneersthat use auction protocols to determine which ex-
ecutor should be assigned which transportation request(s). Task allocation, and also how
the individual executors determine the order in which they complete their tasks, is con-
sidered to take place at the strategical level and, therefore, considered outside the scope
of this thesis. We simply assume each transport resource hasa visiting sequence of lo-
cations and by traversing this visiting sequence it will correctly execute its transportation
requests.

Usually, there is a common transportation network where thevehicles are executing
their plans. Due to limited capacities of this network, these individual transportation plans
might easily interfere with each other. Therefore, we need to find efficient plans for the
individual vehicles, but also need to avoid conflicts with other vehicles during execution
of these plans.

Once one or more transportation requests are assigned to an executor, this executor
must create an initialplan to execute its assigned transportation requests. Such a plan
consists of aroute, a schedule, loading, andunloadinginformation. The route is a se-
quence of locations that are connected in the given transport network. Of course, this
route must visit all pick-up and delivery locations of the assigned transportation requests.
A schedule is a sequence of time points that specifies at whichtime the transport resource
plans to travel to the next location. Finally, the loading and unloading information speci-
fies when freight (or passengers) is loaded and unloaded fromthe transport resource.

There are several aspects that influence theefficiencyof plans. First, the executors
are responsible for executing the transportation requeststhat are assigned to them. More
specific, the reward function is a measure for the efficiency of this request’s execution.
Second, what are the costs of the executor? We can distinct between fixed and variable
costs. Fixed costs are costs for owning or renting the transport resource. Variable costs are
costs for having a driver for the transport resource. Possibly, one might want to distinct
between different states like (un)loading, driving, waiting for other agents, or being idle.If
searching for not only feasible1 plans, but also efficient plans, one must define a certain
cost model that incorporates these notions.

The final aspect of pickup and delivery planning we need to consider is the occurrence
of incidents. Incidents are events that can disrupt the regular operation of a system, in this
case composed of a transportation infrastructure (the network), vehicles, and transporta-
tion tasks. Such incidents may occur due to sudden changes totransportation tasks or

1By feasible plans we mean a plan that is possible to execute, visits all pick-up and delivery locations of
assigned transportation requests and loads and unloads allfreight or passengers correctly.
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due to malfunctioning of one or more individual resources (errors at the infrastructure
resource or transportation resource level).

Although a lot of research has been done in the area of pickup and delivery transporta-
tion planning, there are still several challenges remaining. Those are the topic of the next
section.

1.1.1 Challenges

Important issues in the transportation domain are the guide-path design (transport net-
work), vehicle scheduling, idle-vehicle positioning, vehicle maintenance (e.g., battery
management for AGVs), vehicle routing and conflict resolution (Le-Anh and de Koster,
2004). Our focus is on the short-time online operational planning level. That is, we
abstract from low-level control specific aspects like braking, accelerating, and steering
together with vehicle properties required to work with these control actions. Strategic is-
sues, such as models to estimate the best number of vehicles or to optimize the guide-path,
are also not included.

We consider the most important challenges in pickup and delivery transporation plan-
ning to be:

• Scalability: due to more widely usage and success,

• Robustness: complete automation, no human control,

• More insight in the specificfactorsthat make a problem difficult,

• Insight in whatinformationis necessary for a planner to perform well.

These challenges form the source of our research and resulted in the contributions de-
scribed in Section 1.5. The next section describes a concrete example of pickup and
delivery transportation.

1.2 Approach

The classical solution to the operational pickup and delivery transportation problem is,
in order to reduce its complexity, to separate route planning from run-time conflict res-
olution. First, each actor plans an optimal route to executeits transportation plan and
during execution conflict resolution is used to ensure to remove actual capacity conflicts.
This approach has several disadvantages: sometimes it willresult in gridlocks2 and the
completion time of the transportation requests are in general not predictable in advance.

2A gridlock is a traffic jam so bad that no movement is possible.
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The example of the previous section, however, clearly showed that vehicles (or air-
planes) have to consider the plans of other vehicles in the network to reach a good per-
formance. More advanced approaches try to separate betweenroute planning and conflict
resolution during planning time. With this approach route planning is still done without
considering potential conflicts, but the completion time oftransportation requests is better
predictable at the time the transportation plans are executed. It is, however, questionable
how far this separation (of route planning and conflict resolution) harms the quality of the
final transportation plans. It is of course possible that some conflicts can be avoided by
the vehicles by making detours.

Other researchers adopt an integrated approach, where conflict resolution is integrated
with route planning (context-aware routing). With this approach it is guaranteed that
vehicles find the optimum plan, i.e., the fastest possible way to reach their destination,
given that prior reservations of other vehicles do not change anymore. The best known
result is that of Kim and Tanchoco (1991), which has a high computational complexity.

We will design a new framework for multi-agent transportation planning where we
distinguish transportation agents and infrastructure agents. Transportation agents make
transportation plans, while infrastructure agents make reservation plans for infrastructural
resources (lanes, crossings). In making their transportation plans, transportation agents
query infrastructure agents about the availability of parts of the infrastructure they need.
This extends the approach of Kim and Tanchoco (1991) by allowing infrastructure agents
to use other reservation policies than a simple first-come-first serve and, e.g., to take
into account priorities of agents. With this flexible framework infrastructure agents can
optimize the throughput of the transport network, while thetransport agents strive to
maximize their own performance.

To see the effect on the performance of the context-aware routing approach versus
approaches that separate routing from conflict resolution several experiments will be pre-
sented in this thesis. In synthetic problem instances wherethe important factors, such as
the transport network, set of vehicles and the set of transportation requests, have carefully
been varied the difference in performance will be measured empirically.

Critics of the context-aware routing approach claim that one might doubt whether
it is useful to invest this much time in finding plans which canbe destroyed by a few
incidents (and cause a re-planning). Would the classical approach perform equally well
in incident-rich circumstances? One important aspect to consider is that with the context-
aware approach the infrastructure agents know the reservations of all vehicles. Therefore,
if an incident occurs, they know exactly which vehicles might be affected by the incident
and the infrastructure agents inform the transport agents about delays and unavailability
of parts of the infrastructure, enabling them to replan their routes.

Hence, another important factor in the experiments is the level of incidents. The
effect of incidents on the performance of the system will be empirically evaluated for the
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Figure 1.2: An imaginary airport network example.

different transport planning approaches.

1.3 Example

This section describes some of the challenges (automated) systems are faced in pickup
and delivery transportation. Figure 1.2 shows a simple example of an imaginary airport,
where airplanes have to taxi from runways to gates and back. The example includes four
airplanesA1, A2, A3 and A4, two terminalsT1 andT2, four gatesG1, G2, G3 and G4,
three runwaysR1, R2 andR3, and the remaining resources have been namedr1, . . . , r31.
We assume that all locations have a capacity of 1; hence, no two airplanes can have
overlapping reservations for any of the infrastructure resources at any time. The time to
traverse a resource is also assumed to be the same, say 1, for all resources.

The airplanes are numbered in the order they had contact withthe air traffic con-
trollers. Therefore, air traffic control first received and checked the plan of airplaneA1,
then communicated with airplaneA2 followed byA3 and, finally, airplaneA3 announced
its plan. Each time an airplane informs air traffic control about its plan, the latter checks
whether the plan is valid with respect to prior reservationsof the other airplanes and then
makes reservations for the new plan.

The first thing we can learn from this example is that, if two airplanes travel a com-
pletely opposite route – say airplaneA2 travels to runwayR3 and airplaneA4 does the
opposite – a deadlock is unavoidable if the airplanes start traversing simultanesouly and
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Figure 1.3: An example plan for the four airplanes. Vertically, the airplanes are listed and
the horizontal axis represents time. The total costs of thisplan are 10�12�13�24� 59.

do not alter their route. However, we can improve on this situation by having each airplane
create reservations that cannot be violated by the other airplanes.

The first airplane to construct a plan isA1. AirplaneA1 wants to take off on runway
R1. Because there are no reservations of other airplanes at themoment, airplaneA1 can
execute the routepG4, r8, r9, r10, r11, r12, r14, r15, r16,R1q immediately and as fast as pos-
sible. AirplaneA2 is not delayed by airplaneA1 and can go right behind it. The same
holds for airplaneA3, who wants to take off at runwayR2, while bothA1 andA2 have
non-conflicting reservations. For airplaneA3, who wants to take off at runwayR2 as well,
there are two possible plans that have the same costs. First,it can travel along the re-
sourcesr10, r11, r12, andr14. In this case, it has to wait one time unit before it can enter
resourcer12, because airplaneA2 is in r12 at that moment. Second, airplaneA3 can also
travel along the resourcesr10, r11, r13, r18. The resulting plan is one resource longer, but
there is no waiting time; hence, the time it enters the runwayis the same. Let us sayA3

chooses the plan without waiting time. Then, Figure 1.3 illustrates these plans.

Just before touch down on runwayR3, airplaneA4 contacts air traffic control. It turns
out airplaneA4 must taxi to gateG1. There are two possible choices: the upper routepR3, r17, r16, . . .q or the lower routepR3, r17, r21, . . .q. In both cases airplaneA4 wil en-
counter an airplane coming from the opposite direction (allresources have unit capacity),
which means it cannot enter resourcer17 until the other airplanes have finished using it.
This results in a big waiting time for airplaneA4.

All airplanes constructed a valid plan, which reaches theirdestination resources as
fast as possible, given the prior reservations. But is this plan the best possible plan for
the airplanes? No, consider the plan illustrated in Figure 1.4. In this particular situation
where airplanes travel opposite routes, it is usually better if from one side they take the
one (e.g., upper) route, while from the other side the airplanes take the other route.

We can separate between two different approaches to improvethe plan illustrated by
Figure 1.3. The first is torescheduleone or more airplanes. This means the routes of
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Figure 1.4: The total costs of this plan are 10�12�13�14� 49.

the airplanes remain unchanged, but the times at which they enter and exit resources is
changed. In this example, rescheduling cannot result in theplan illustrated by Figure 1.4.

The other approach is torerouteone or more airplanes. Rerouting both changes the
times at which the airplanes enter and exit resources, as well as the sequences of resources
that form the routes of the airplanes. Obviously, with rerouting the optimal plan can be
reached. The challenge here is the enormous amount of possibilities if the number of
airplanes grows.

One possible approach to deal with this is to useheuristics, for instance to determine
the order in which the airplanes search a shortest path. In this example, a good choice for
such a heuristic might be to give priority to airplanes (for creating reservations), which
have (approximate) opposite source/destination locations to airplanes that already created
their reservations. The use of such a heuristic reduces the amount of possibilities that have
to be considered, but sometimes, of course, prevent the discovery of the optimal plan.

The next section describes our approach to solve large pickup and delivery transporta-
tion planning problems. Using such an approach computers can support the air traffic
controllers to make the right decisions.

1.4 Research questions

The research presented in this thesis addresses routing, scheduling, and conflict-resolution
in the transportation planning domain; our first goal is to test and compare planning meth-
ods that separate route planning and conflict resolution with integrated planning methods.
Furthermore, experiments will show the performance of the different infrastructure agent
policies in the flexible framework.

The second goal is to find out whether the context-aware approach is alsorobust;we
test and compare the different approaches under increasingdensity of disruptions like
malfunctioning resources.

During the project an agent-based transport planning simulation tool calledTRAPLAS
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is developed to be able to do experiments and a benchmark set is constructed for pick-up
and delivery transport planning problems.

1.5 Research contributions

With hindsight we list the main contributions of this thesis, grouped into categories:

Framework

• Distinguish between transport agents (making transportation plans) and infrastruc-
ture agents (making reservation plans for individual infrastructure resources).

• Resource management model for transportation planning.

• More general definition of a conflict not assuming unit capacity resources.

Methods

• Shortest-path algorithm taking into account both forbidden time-windows and an
intermediate visiting sequence (ordered sequence of locations to be visited).

• Iterative traffic-aware dynamic (re)routing and scheduling methods that guarantee
conflict-free plans.

• Incident management techniques in routing and scheduling.

Experiments

• Benchmark set for the transport planning problem together with a simulation en-
vironment that can plan, replan, and execute to gain experimental data. The sets
of transportation requests were generated in such a way thatthe optimal solution
is known (and an lowerbound for merged instances, which haveincreasing request
load).

• Insight in what sort of information is important for the (re)planner while
(re)planning pick-up delivery transportation under influence of incidents.

• What are the important factors in transportation that make aproblem difficult to a
(re)planner or that make a big difference in the results?
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This research started as a follow up of a master’s thesis research (Zutt, 2001)
that has been demonstrated at the Belgium-Netherlands Artificial Intelligence Con-
ference (Zutt and de Weerdt, 2000). The system architecturewas first published in
(Aronson et al., 2002a,b). These papers deal with the separation between the strategic,
tactical and operational layer of a transport planning system and the individual activities
that belong to these layers. As a joint work with Roman van derKrogt and Leon Aron-
son, both a paper on the tactical level and a separate paper onthe operational level were
published (Zutt et al., 2002; van der Krogt et al., 2002).

Some work on diagnosis has been carried out (Bos et al., 2002). However, this is
mainly omitted from this thesis due to the choice of adoptinga bottom-up approach. If an
incident occurs, the system is signaled from where the disruption occurred and, hence, it
is assumed that all information concerning the incident is known exactly.

In (Valk et al., 2001a,b,c) methods for coordination in the logistic domain were pre-
sented accompanied by some approximation results. The transport planning model, as
used throughout this thesis, is first described in (Zutt and Witteveen, 2004). Apart from
the model this paper includes the first planning methods, among others, the approach
suggested by Hatzack and Nebel to transform route planning for a fleet of vehicles to a
variant of Job Shop Scheduling. In (de Weerdt et al., 2003b),the first collaboration results
are presented. The latest publication (Zutt et al., 2009) isa compilation of this thesis as a
book chapter.

Of course, the transport planning simulation toolTRAPLAS, with all its ex-
tensions, is freely available under the GNU General Public License (GPL)
at http://traplas.sourceforge.net. Also, a three-dimensional
visualization toolkit, especially developed for TRAPLAS, is available at
http://traplasviz.sourceforge.net. TRAPLASVIZ is based on Open-
SceneGraph, an open source high performance three-dimensional graphics toolkit.

1.6 Outline of thesis

Chapter 2 describes a family of pickup and delivery problemsand the state-of-the-art
solution techniques, accompanied by benchmark results, tosolve those problems.

Subsequently, Chapter 3 describes our transportation planning framework. Its most
important aspect is the separation between transport agents and infrastructure agents,
which makes it more flexible: transport agents optimize the execution of their own trans-
portation requests, while infrastructure agents optimizethe troughput of the transport net-
work. This chapter also provides definitions for what we consider a conflict exactly and
describes how to compute an individual reservation to access an infrastructure resource
for a vehicle in such a way that it does not conflict with any existing reservation.

http://traplas.sourceforge.net
http://traplasviz.sourceforge.net
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Chapter 4 presents our newly developed planning and scheduling methods. A traffic-
aware shortest-path planning method is described; this is like regular shortest-path algo-
rithms, e.g., the famous Dijkstra algorithm, extended withthe awareness of the plans of
other vehicles. Then, the planning methods are described that transport agents use to cre-
ate plans to execute the tasks that were assigned to them. Extensions to the methods are
presented that can deal with situations in which incidents occur.

In Chapter 5 describes our experiments. For this purpose a transportation planning
simulator, calledTRAPLAS, is developed, which is built on top of the Pamela Run-Time
Library of van Gemund (1994). The construction of a benchmark set of pick-up and de-
livery transportation planning problem instances – satisfying our transportation model – is
given. The simulator together with the benchmark set have been made publicly available
as a SourceForge project (namedTRAPLAS). The experiments were efficiently executed
on the supercomputer (the Distributed ASCI Supercomputer,DAS-2).

The performance of different planning methods is tested andcompared while varying
the transport network structure, the number of transportation requests and the number
of transport agents. The same experiments are repeated while increasing the level of
incidents to test the robustness of the planning methods. Methods that performance best
under normal circumstances, might be inferior in case of disruptions that disturb normal
plan execution. Throughout these chapters figures are presented to illustrate the scalability
of the approaches – in other words, can the planning methods still be used if the system
grows (e.g., bigger transport networks, higher request loads, more agents, more incidents).

Appendix A is included as a guide for the reader about the notation used throughout
this thesis. In Appendix D it is proven that the transport planning problem is at least as
hard to solve as several other famous problems like Satisfiability, the Traveling Salesman
Problem (TSP) and others. This supports the development of planning methods that,
instead of searching for the best possible (or optimal) solution, are satisfied with searching
for approximations of these optimal solutions.
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Chapter2
Pickup and delivery transportation

This chapter describes well-known problems with state-of-the-art solution techniques in
the field of pickup and delivery transportation. Although research has progressed very
well in the field of pickup and delivery transportation, it cannot easily be determined
which of the many different approaches supersedes the others in performance. Attempts
have been made by organising competitions at conferences and by providing benchmarks,
but hard conclusions cannot be drawn at this point.

Besides the many similarities between the theoretical pickup and delivery transporta-
tion problems and their realistic counterparts, there are also two important differences
that this chapter points out. First, in August 2006, news reported that the port in Rotter-
dam could not keep the pace with its competitors (Benneker, 2006; ANP, 2006). Besides
lack of space the reason for this was a failing ICT. No matter how well the organisation
is structured and how good the planners perform, overall performance depends on the
weakest link. Therefore, one must also act with competence in case some (sub)systems
are malfunctioning and pre-computed plans must be modified.

Second, the exact structure of the transport network is often abstracted from. Instead
of constructing a detailed route for each vehicle, it is assumed that each location is con-

15
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nected to each other location. Implementing this in practice results in a system that has
no control over congestion. To minimize congestion, and to maximize throughput of the
transport network, space and the individual routes of the vehicles must be modeled in
more detail. Basic shortest-path algorithm to determine a shortest route from a source
to a destination location, without taking into account other vehicles, do not suffice. The
same is required to avoid collissions and guarantee safety constraints, such as a safety
distance between vehicles.

2.1 Classical pickup and delivery problems

The general point of interest of this thesis is pickup and delivery transportation problems.
In traditional pickup and delivery problems, vehicles haveto transport freight from a
source to a destination location without transshipment in any of the intermediate locations.
Furthermore, it is assumed that all transportation tasks are known in advance.

The first problem to be discussed is the General Pickup and Delivery Prob-
lem (Savelsbergh and Sol, 1995). In the GPDP, a fleet of vehicles is given and each
vehicles has a specified loading capacity, start location and end location. Furthermore,
there is a set of transportation requests and each request consists of a source and destina-
tion location. A solution to the GPDP is a set of routes for thevehicles that satisfies the
set of transortation requests without any transshipment.

Three specializations of the GPDP that have been extensively studied are thePickup
and Delivery Problem(PDP), theDial-a-Ride Problem(DARP) and theVehicle Routing
Problem(VRP). In the PDP each transportation request specifies a single source location
and a single destination location. Also, all vehicles depart from a single location and they
have to return there - this location is referred to as thedepot. The DARP is a PDP where
the load of all transportation requests equals 1, namely people instead of freight is being
transported (for example, the taxi-cab domain). Besides that, in the DARP it is obligatory
that all transportation requests are executed, whereas forthe other problems mentioned
here this not always a hard constraint (Savelsbergh and Sol,1995). The objective in the
DARP is often modeled from the point of view of the customer (e.g., minimizing waiting
time or travel time of the customer), as opposed to the point of view of the system (e.g.,
minimize the makespan or total fuel consumption) for the other problems. The VRP is a
PDP with either all source locations or all destination locations equal to the depot.

Researchers like Cordeau and Laporte (2003); Cordeau et al.(2004, 2005);
Sammarra et al. (2006); Berbeglia et al. (2006); Savelsbergh and Sol (1995) all pro-
vided definitions for the aforementioned problems, usuallyformulated as mixed-integer
programming problems. Mixed-integer programming problems are linear programming
problems where some of the variables must be integer. Although linear programming
problems can be solved efficiently, mixed-integer programming problems cannot (unless
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Figure 2.1: General Pickup and Delivery Problem (GPDP).

P� NP). All variants of the GPDP discussed in this section are known to beNP-hard.
In the GPDP tasks must be assigned to vehicles and routes mustbe computed for the

vehicles that execute the tasks assigned to it. In this section the GPDP and variants are de-
scribed in detail. Furthermore, mixed integer programs developed by Savelsbergh and Sol
(1995) are also given, because in this form the GPDP and variants are usually encountered
in literature and they give a detailed definition.

Remark 2.1 To understand the mixed integer programs, for the GPDP givenin Fig-
ure 2.2, some notation needs to be introduced. LetN be the set of transportation requests
to be executed. For each transportation requesti P N, a vector of load quantitiesqi indi-
cates what has to be transported from locations in the set of origins N�

i � N to the set
of destinationsN�

i � N. For originsP N this quantityqi,s is a positive load to be trans-
ported to destination locations that occur at other elements of qi . It must always hold
that

°
jPN�

i
qi, j ��° jPN�

i
�qi, j (for each transportation requesti P N the sum of loading

quantities equals the sum of unloading quantities). The setN� � YiPNN�
i is defined as

the set of all origins, and, likewise, the setN� � YiPNN�
i for the set of all destinations.

Their union forms the setV � N�YN�.
The setM is the set of all vehicles, where each vehiclek PM has a capacityQk P N, a

start locationk�, and an end locationk�. M� � tk� : k PMu is the set of start locations
of the vehicles andM� � tk� : k PMu the set of end locations. These together form the
setW �M�YM�. The transport network has vertex setVYW and for alli, j P VYW
the distance fromi to j is denoted bydi j , ti j is the travel time, andci j the travel costs.
Dwell times, such as the length of time cargo remains at a location before being loaded
onto a ship or the amount of time a train spends in the station with its doors open, can be
incorporated in these travel times.

The GPDP, as illustrated in Figure 2.1, is the problem of how to divide the transportation
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requests inN over the available vehicles inM and to construct a routeRtk� pv1,v2, . . . ,vnq
for each vehiclek PM, wherevi PVYW. For each vehiclek PM, this route must start in
k� (v1 � k�), end ink� (vn � k�), and it must visit all source and destination locations
N�

i YN�
i of transportation requesti PN assigned to this vehicle exactly once, and no other

locations. Furthermore, the source locations of the transportation requests must obviously
be visited before the destination, but also at no point alongthe route the capacityQk of
the vehicle can be exceeded. Finding an arbitrary plan, i.e., a set of routes, that satisfies
all of this is trivial, just start with an arbitrary partition of the transportation requests
as an assignment to the vehicles and put these in an arbitrarysequence (source directly
preceding destination). The difficult part is the optimization: to find a route for each of
the vehicles such that, for instance, total cost is minimized or total profit is maximized.

Figure 2.2 illustrates the General Pickup and Delivery Problem formulated as a math-
ematical programming problem. Here, four additional variables play a role: assignment
variablezk

i P t0,1u equals 1 if transportation requesti P N is assigned to vehiclek P M,
movement variablexk

i j P t0,1u equals 1 if vehiclek PM travels from locationi P VY k�
to location j PVY k�. The departure time at vertexi PVYW is specified byDi and the
the current load of the vehicle arriving at vertexi is represented byyi .

Constraint 2.1, 2.2, and 2.12 correspond to the task assignment. Constraint 2.1 spec-
ifies that each transportation request is assigned to exactly one vehicle, Constraint 2.2
ensures that a vehicle only enters and leaves a vertex exactly once when the request is
assigned to the vehicle (zk

i � 1). Constraints 2.3, 2.4, and 2.5 specify the start location,
start time and end location for the vehicles. Constraint 2.6ensures that each pickup oc-
curs before the corresponding delivery, Constraint 2.7 makes sure the traversal times are
taken into account correctly. Constraint 2.8 says all vehicles start empty, Constraint 2.9
makes sure that vehicles are never overloaded, and Constraint 2.10 ensures that a vertex
is completely processed, with respect to loading and unloading, when visited.

The objective function determines what is being optimized.For a single vehicle, there
are objective functions that minimize the completion time,the travel time, travel distance,
or customer inconvenience. For multiple vehicles, the number of vehicles used could be
minimized or the summed profits can be maximized. The actual object function that is to
be used depends heavily on the (real-life) problem that is being modeled.

As the name suggests, the General Pickup and Delivery Problem serves as a general-
ization of the Pickup and Delivery Problem, but also for the Vehicle Routing Problem and
Dial-a-Ride Problem. All three of these problems can easilybe defined as specializations
of the GPDP. To start with, thePickup and Delivery Problem, see Figure 2.3, is a GPDP
in which each transportation request specifies a single source location, a single destina-
tion location, and all vehicles depart from and return to a special location called thedepot.
Such as depot represents the location where for instance allvehicles are parked and where
all drivers start their day and return to in the evening. Figure 2.4 shows a mixed integer



Chapter 2. Pickup and delivery transportation 19

Maximize objectives

Subject to

ķPM

zk
i � 1 �i P N, (2.1)¸

jPVYW

xk
l j � ¸

jPVYW

xk
jl � zk

i �i P N, l P N�
i YN�

i ,k PM, (2.2)¸
jPVYtk�uxk

k� j � 1 �k PM, (2.3)¸
iPVYtk�uxk

ik� � 1 �k PM, (2.4)

Dk� � 0 �k PM, (2.5)

Dp¤ Dq �i P N, p P N�
i ,q P N�

i , (2.6)

xk
i j � 1ñ Di� ti j ¤ D j �i, j PVYW,k PM, (2.7)

yk� � 0 �k PM, (2.8)

yl ¤
ķPM

Qkz
k
i �i P N, l P N�

i YN�
i , (2.9)

xk
i j � 1ñ yi�qi � y j �i, j PVYW,k PM, (2.10)

xk
i j P t0,1u �i, j PVYW,k PM, (2.11)

zk
i P t0,1u �i P N,k PM, (2.12)

Di ¥ 0 �i PVYW, (2.13)

yi ¥ 0 �i PVYW. (2.14)

Figure 2.2: Mixed integer program for the GPDP (Savelsberghand Sol, 1995). Note that
xk

i j � 1ñ Di � ti j ¤ D j can be written asxk
i j pDi � ti j q ¤ D j , but is written like this for

clarity (same holds for Constraint 2.10).
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Figure 2.3: Pickup and Delivery Problem (PDP).
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Maximize objectives

Subject to

All GPDP constraints, (2.15)|W| � 1, (2.16)|N�
i | � |N�

i | � 1 �i P N. (2.17)

Figure 2.4: Mixed integer program for the PDP (Savelsbergh and Sol, 1995).
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Figure 2.5: In the Dial-a-Ride Problem (DARP) the loads to betransported have a volume
equal to 1 (passengers instead of freight).

program for the PDP in which Constraint 2.17 specifies that the number of pickup and the
number of delivery locations equals 1 and Constraint 2.16 enforces all vehicles to start
and end at a single special location called the depot.

TheDial-a-Ride Problem, see Figure 2.5, is a PDP in which all loads have a constant
volume equal to 1. It arises in contexts where passengers aretransported instead of freight.
The DARP distinguishes itself from the GPDP by focusing on customer inconvenience.

Maximize objectives

Subject to

All GPDP constraints, (2.18)|W| � 1, (2.19)|N�
i | � |N�

i | � 1 �i P N, (2.20)

qi j � 1 �i P N, j P N�
i YN�

i . (2.21)

Figure 2.6: Mixed integer program for the DARP (Savelsberghand Sol, 1995).
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Figure 2.7: Vehicle Routing Problem with nine locations, among which one depot, and
three vehicles. The solution is a set of three routes, one foreach vehicle, such that each
vehicle starts and ends in the depot and all locations are visited by exactly one vehicle.

Maximize objectives

Subject to

All GPDP constraints, (2.22)|W| � 1, (2.23)|N�
i | � |N�

i | � 1 �i P N, (2.24)

N�
i �W_N�

i �W �i P N. (2.25)

Figure 2.8: Mixed integer program for the VRP (Savelsbergh and Sol, 1995).

Often, additional constraints (or modifications to the optimization criterion) are present to
limit (i) the amount of waiting time,(ii) the time spend by a customer in the vehicle, and
(iii) deviations from desired departure or arrival times. Figure2.6 shows a mixed integer
program for the DARP very similar to the PDP, but with the additional Constraint 2.21
specifying that all loads have a volume equal to 1.

TheVehicle Routing Problem, see Figure 2.7, is a PDP in which either all origins of the
transportation requests are the depot, or all destinationsof the transportation requests are
the depot. The VRP is very popular for instance for problems with supplying warehouses.
The depot is then a distribution center from which a set of warehouses has to be supplied.
Figure 2.8 shows a mixed integer program for the VRP in which Constraint 2.25 specifies
that for all requestsi P N either the pickup locationN�

i or the destination locationN�
i
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must be equal to the depot.

The pickup and delivery problems described above are thoroughly investigated by
many researchers. They are so interesting because many real-life problems can be for-
mulated using these pickup and delivery problem variants asa starting point; GPDP is a
relaxed version of many real-life pickup and delivery problems. Furthermore, there ex-
ist many planning tools that can solve GPDP and variants and,therefore, it was possible
to create benchmark sets that provide detailed comparison of the performance of these
different planning tools. After considering a practical extension to GPDP, namely the
concept of time, these planning tools will be described.

2.1.1 Time

In the early 1980s it was noticed that time played an important role in most practical
pickup and delivery problems. Customers usually enforce, or at least prefer, the loading
and unloading of freight to occur within so-calledtime-windows. A time-window is just
an interval of time. Of course, the original problem definition already hadprecedence
constraintsstating that each pickup event must precede the corresponding delivery event
in time, but these time-windows further restrict the loading and unloading events to take
place in specified time-windows. Using these time-windows it became possible to model
when packages to be transported were available, or when trucks were allowed to supply
supermarkets (for example, parking space for the trucks might only be available during
the morning).

A time-window can berestrictive or non-restrictive(Mitrovi ć-Minić, 1998), which is
also referred tohard versussoftconstraints respectively. If time-windows are restrictive,
then a plan that violates any of the given time-windows is notfeasible. In that case,
arriving at a customer before the time-window opens resultsin extra waiting time and
arriving to late results in complete failure of the transportation request. In case of soft
constraints, loading or unloading too early or too late results in less profit or a greater
penalty for the responsible agent.

Mitrovi ć-Minić (1998) mention that the notion of time can both complicate or sim-
plify the problem. It complicates the problem, because finding a feasible plan becomes
much more difficult. Without considering time any arbitraryassignment of transportation
requests to vehicles with arbitrary routes would have been feasible. If the time-windows
arerestrictive, finding a feasible plan already is an NP-hard problem. On theother hand,
there are cases where time simplifies the problem. Finding anoptimal plan with restrictive
time-windows can be easier, as due to all the time constraints, the search space becomes
much smaller. The actual situation depends on the exact problem instance at hand, as both
for soft and hard constraints the optimization problem isNP-hard.
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2.1.2 Solution methods

The number of papers and even survey papers in the field of pickup and delivery trans-
portation problems is enormous. The results of solution methods are not easy to compare.
Not only because there are many problem variants, but also because there are different
categories of solution approaches, each with their own goals. Furthermore, often the so-
lution methods are considered too complex for thorough analysis and the quality of these
methods is measured by running them on large and publicly available benchmark sets.
These benchmark sets are very valuable, although unfortunately good comparison be-
tween solution methods seems non-existing. This section compares, as far as possible,
exact approaches, heuristic and meta-heuristic approaches to pickup and delivery trans-
portation problem variants.

Exact approaches

Exact approaches are guaranteed to find the optimal solution. They search all possible
alternatives except for those that could be proven not to be optimal.

Psaraftis (1980) developed anOp|O|23|O|q algorithm for the DARP, where each cus-
tomer had to be served immediately, using forward dynamic programming, where|O| is
the number of transportation requests. Because it was written to serve each customer im-
mediately, it can be used without modification for the PDP with a single vehicle. In 1983,
this dynamic programming method was further developed suchthat it could also be ap-
plied to the DARP with time-windows (Psaraftis, 1983). Several years later the approach
of Psaraftis was improved, when Desrosiers, Dumas and Soumis (1986) improved the for-
ward dynamic programming by using an effective state elimination criterion, especially
effective when the time-windows are tight and vehicle capacities small.

Desrosiers et al. (1986) used a branch and bound tree approach for the multiple vehicle
PDP with time-windows. The branch and bound technique is also applied to the VRP
by Fisher (1994). Later, Desrosiers et al. (1991) developeda new exact method based
on the Dantzig-Wolfe decomposition or column generation, embedded in a branch-and-
bound tree. Dantzig-Wolfe decomposition is a technique forsolving large-scale linear
programming problems. The idea of Desrosiers et al. was to use the strength of this
decomposition technique to end up with a very small branch-and-bound tree.

There are also AI methods for solving GPDP, which were not directly developed with
the intention to apply them to GPDP. The STRIPS and PDDL languages (see Appendix H)
are able to represent problem instances in a variety of planning domains, among which a
logistic domain called TRUCKS. There have been several editions of planning competi-
tions (International Planning Competition (IPC) hosted atthe ICAPS conference in 2007),
where special-purpose and general-purpose planners compete with each other on several
planning domains represented by STRIPS or PDDL. It is the aimof the IPC to analyse
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Figure 2.9: SATPlanning package.

the current state of the art in planning for a variety of domains.

Among the IPC competitors was SATPLAN (Kautz and Selman, 1992, 1999) that fin-
ished first in 2004 and 2005 (together with MAXPLAN ) in the optimal planning track.
Kautz and Selman developed efficient reductions to Satisfiability and then used dedi-
cated Satisfiability solvers to find optimal transportationplans. Figure 2.9 illustrates the
SATPlanning package, developed by Broekens, Van Rantwijk,Zutt et al. in 2000, which
follows the idea of Kautz and Selman. Figure 2.9(a), a PDP instances, where the transfor-
mation requests are already assigned to the vehicles, is transformed into a Satisfiability
instance. This instances is solved by a dedicated Satisfiability solver and then transformed
back into Figure 2.9(b). After personal communication Kautz commented it is hard to
give numbers on the performance of these planners and, therefore, the performance is il-
lustrated by showing the results of these planners on the logistic domain that was part of
the IPC 2005.

Figure 2.10 illustrates the performance of the IPC 2005 competitors on the TRUCKS

domain. In the TRUCKS domain, trucks have to move packages between locations under
certain spatial constraints and delivering deadlines. Figure 2.10 shows the results of the
competing planners on 30 different problem instances in theTRUCKS domain. On the left
side are the planners that search for the optimal solution, on the right planners that aim for
satisfying solutions1. The instances consist of 3 to 7 locations with 6 to 42 connections,
3 to 20 packages, and 3 to 7 trucks; from problem instance 1 to problem instances 30
they are increasing in size. The optimal planners only foundsolutions for the 10 smallest
instances. The satisfying planners, although producing nearly-optimal solutions on these

1The planners tagged with ipc04 are reference planners, those were the winners of the IPC 2004.
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Figure 2.10: Results of the propositional TRUCKS domain at the International Planning
Competition 2005 (IPC-2005).

instances, take quite a lot of time, which emphasizes the importance of special-purpose
planners for logistic domains.

The general impression of using exact approaches for pickupand delivery problems
is that they are able to solve problem instances with less than dozens of transportation
requests. That is why many researchers chose to develop heuristic approaches that do not
guarantee to find the best possible solution, but are able to find nearly-optimal solutions
for problem instances with thousands of transportation requests.

Heuristic approaches

Heuristic approach are solution methods in which aheuristic2 is used. A heuristic is a
way to approximate the optimal solution, not by searching the complete search space,
but considering only a part of it. For example, a heuristic can be that two transportation
tasks that have to be pickup up (or delivered) at the same location are always assigned to

2The name heuristic originates from the famous exclamation “Eureka!” (I have found it!) of
Archimedes.
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the same vehicle, without further consideration. Such a heuristic obviously speeds up the
algorithm, but not necessarily always find the optimal solution.

Heuristic approaches are again divided into two categories: regular heuristics and
meta-heuristics.Regular heuristicsare usually domain specific guides that direct the
search towards a local optimum and then return the best encountered solution.Meta-
heuristicsare high-level methods that control the execution of a simpler heuristic, in a
hopefully efficient way. They are generally applied to problems for which there is no sat-
isfactory problem-specific algorithm or heuristic; or whenit is not practical to implement
such a method.

In the 1970s several heuristic approaches are developed, that can again be categorized
in decomposition, insertion, andlocal searchmethods. An example of a decomposition
heuristics is the two-phase method called cluster-first, route-second (Fisher and Jaikumar,
1981). This heuristic, for example, decomposes the problemby clustering locations that
are within a circle (i.e., that are near to each other) and only then constructs a route
along these locations. The strategy of insertion heuristics (Jaw et al., 1986) is to start
with an empty plan, and then sequentially inserting new transportation requests that seem
to fit well into the existing plan. Local search methods, studied by Savelsbergh (1990),
start with suboptimal but feasible plans that are continuously improved until some local
optimum is reached.

Meta-heuristic approaches

The following are examples of meta-heuristic approaches that have been successfully
applied to pickup and delivery problems. It is not clear which of the meta-heuristic
approaches performs best, but the largest known problem instances are solved due to
meta-heuristic approaches. These instances contain thousands of transportation requests
executed by dozens of vehicles. The exact results of different methods to well-known
benchmarking sets (Solomon, Christofides, Elliot, and Toth) can be found on the VRP
Web.

Tabu search Gendreau et al. (1998) and Gendreau et al. (1999) analyzed meta-heuristic
approaches for both the dynamic VRP with time-windows and the dynamic VRP with
time-window and pickup and delivery. Their strategy is to solve the dynamic problem
as a sequence of static problems. The purpose of their papersis to test different heuris-
tics with Adaptive Tabu Search. Tabu search is a local search method that examines the
neighborhood in order to move to the best neighbor; solutions that were recently exam-
ined are forbidden, or tabu, for a certain number of iterations. Their conclusions were that
(i) adaptive heuristics outperform others,(ii) the difference between adaptive and non-
adaptive heuristics is bigger in less dynamic situations (otherwise there was not enough
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computation time to find improvements), and(iii) the dynamic case has a more complex
objective function than needed in the static case.

Simulated annealing Simulated annealing is based on the annealing of solids, thepro-
cess to heat and then cool solids, which is usually done to soften them. It is a local search
method developed in an attempt to improve local search when this gets stuck in a local
optimum. Normally, for a candidate solution that is being investigated, only changes are
allowed that move towards the local optimum (i.e., changes that improve the candidate so-
lution). Simulated annealing does the same, but with a certain (small) probability, it allows
the candidate solution to move into some (random) other direction. Chiang and Russell
(1996) describes several approaches to VRP using simulatedannealing.

Ant systems Ant Colony Optimization is a population-based, general search technique
for the solution of difficult combinatorial problems which is inspired by the pheromone
trail laying behavior of real ant colonies. The first Ant System was developed by
Dorigo et al. (1991). It had encouraging initial results on the Traveling Salesman Prob-
lem, but was inferior to the state-of-the-art methods at that time.

Ant-based routing, more generally referred to as swarm-based routing, has been ap-
plied to load balancing in telecommunications networks by Schoonderwoerd et al. (1997),
as a control mechanism for communications networks by Di Caro and Dorigo (1998), for
combinatorial and continuous optimization by Rubinstein (1999), and later as route find-
ing strategy, for example by Bjarne E. Helvik (2001) or by Di Caro et al. (2004). These
systems are still in use and in active development.

Evolutionary algorithms Genetic algorithms have also been applied to the VRP. A
genetic algorithm is an adaptive heuristic search method based on population genetics
(Bräysy, 2001). Generation after generation new individuals, which are the candidate
solutions usually represented by bit strings, are being created. In a recombination phase,
different individuals are used to create new ones, by combining chromosomes of the
parents, hopefully improving on the best solution so far. Furthermore, mutation randomly
modifies genes of a single individual to ensure genetic diversity of the individuals. Evo-
lutionary algorithms are still being developed, e.g., in the EvoVRP project (Pereira et al.,
2002; Tavares et al., 2003).

Several exact and heuristic approaches to pickup and delivery problem variants have
been described. All of these are still being further developed and it is not easy to compare
their performance. Table 2.11, 2.12, and 2.13 show results presented at the VRP web.
Here only the benchmarks are listed for which the corresponding solution methods are
given. It seems that evolutionary algorithms perform best for these three benchmark sets.
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Taillard instance
(number of
customers)

Best known
solution [total

distance driven]

Method

tai75a (75) 1618.36 Parallel iterative search heuristic
tai75c (75) 1291.01 Parallel iterative search heuristic
tai75d (75) 1365.42 Parallel iterative search heuristic

tai100a (100) 2041.34 Ant systems
tai100b (100) 1940.61 Evolutionary algorithms
tai100c (100) 1406.20 Ant systems
tai100d (100) 1581.25 Ant systems
tai150a (150) 3055.23 Parallel iterative search heuristic
tai150b (150) 2656.47 Ant systems
tai150c (150) 2341.84 Parallel iterative search heuristic
tai150d (150) 2645.39 Parallel iterative search heuristic
tai385 (385) 24431.44 Local search

Table 2.11: Benchmark results on the VRP for the Taillard instances, available at the VRP
Web.

Li et al. (2005) provide another large-scale VRP benchmark in which their own heuristic
method, variable-length neighbor list record-to-record travel, performs best followed by
granular tabu search.

There are, however, some important shortcomings that have to be overcome for these
methods to be useful in practice. On the one hand, congestionhas been ignored. The
routes of the vehicles are no more than a visiting sequence, i.e., an ordering of locations
to be visited by the vehicles. When the exact routes are determined, unpleasant surprises
might occur with respect to congestion. If many vehicles take a similar route, bottlenecks
might arise in the transport network. On the other hand, so far it is assumed that all trans-
portation tasks are known in advance. And also, the plans getexecuted exactly according
to plan, without any failures (e.g., vehicle breakdown).

The following two sections cover these issues. The first iscontext-aware routing, in
which the vehicles take into account the plans of other vehicles and, hence, advances the
possibilities to avoid potential bottlenecks or congestion in the transport network. The
second isincident management,which is about taking into account disturbances and fail-
ures (including changes to or newly arriving tasks). The above methods can still provide
a useful starting point, i.e., an assignment of transportation requests to the vehicles and,
for each vehicle, an ordering in which to execute the transportation requests. Other tech-
niques must be used to maintain robustness and feasibility of these plans.

Note that conflicts are not incidents. Conflicts arise as predictable problems due to
planning (or the execution thereof), while incidents are unpredictable events by definition.



Chapter 2. Pickup and delivery transportation 29

Golden instance
(number of
customers)

Best known
solution [total

distance driven]

Method

1 (240) 5627.54 Evolutionary algorithms
2 (320) 8447.92 Tabu search
3 (400) 11036.23 Tabu search
4 (480) 13624.52 Tabu search
5 (200) 6460.98 Tabu search
6 (280) 8412.88 Tabu search
7 (360) 10195.56 Tabu search
8 (440) 11663.55 Evolutionary algorithms
9 (255) 583.39 Evolutionary algorithms
10 (323) 742.03 Local search
11 (399) 918.45 Evolutionary algorithms
12 (483) 1107.19 Evolutionary algorithms
13 (252) 859.11 Evolutionary algorithms
14 (320) 1081.31 Evolutionary algorithms
15 (396) 1345.23 Evolutionary algorithms
16 (480) 1622.69 Evolutionary algorithms
17 (240) 707.79 Evolutionary algorithms
18 (300) 998.73 Evolutionary algorithms
19 (360) 1366.86 Evolutionary algorithms
20 (420) 1821.15 Evolutionary algorithms

Table 2.12: Benchmark results on the VRP for the Golden and Van Breedam instances,
available at the VRP Web.

This does not mean the techniques to deal with both do not overlap. In both cases, at
the operational level, fast replanning decisions are necessary to recover the plans of the
involved vehicles.

2.2 Conflict resolution

The classical problems together with their variants described in the previous sections
consider the routes of the vehicles at an abstract level. In fact, only the order in which
pickup and delivery locations (or customers in the Vehicle Routing Problem) are visited
is considered a solution to the problem. If the ratio of the number of vehicles to the size
of the transport network is relatively large, which is usually the case at AGV terminals
for example, the traversal time for a certain route is highlyinfluenced by the vehicle load
along this route. In such cases a more detailed model of the infrastructure and the routes
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Van Breedam
instance (number

of customers)

Best known
solution [total

distance driven]

Method

1 (100) 1106 Evolutionary algorithms
2 (100) 1506 Evolutionary algorithms
3 (100) 1751 Evolutionary algorithms
4 (100) 1470 Evolutionary algorithms
5 (100) 950 Evolutionary algorithms
6 (100) 969 Evolutionary algorithms
7 (100) 1032 Descent heuristic
8 (100) 1067 Descent heuristic
9 (100) 1690 Evolutionary algorithms
10 (100) 1026 Evolutionary algorithms
11 (100) 1028 Evolutionary algorithms
12 (100) 1616 Descent heuristic
13 (100) 983 Descent heuristic
14 (100) 2337 Descent heuristic
15 (100) 1083 Descent heuristic

Table 2.13: Benchmark results on the VRP for the Van Breedam instances, available at
the VRP Web.

of the vehicles is required.
The sequel of this chapter focuses on planning for a fleet of vehicles and execution

of these plans on transport networks, where the locations have limited capacities. The
approaches are divided into three different categories:(i) approaches that prevent con-
flicts from occurring,(ii) approaches that solve conflicts during execution of the plans (or
after a route has been chosen), and(iii) approaches that solve conflicts during the (route)
planning phase. First, the next section describes reservations and the two main types of
conflicts.

2.2.1 Reservations and conflicts

When agents created plans to execute their assigned transportation tasks, they would like
to have a way to ensure that these plans remain feasible untilthe end. To make that
possible, the other agents have to know about this plan and, hence, the agent has to make
reservationsfor the resources in its plan. These reservations must be publicly available,
but, if desired, they can be anonymous.

A situation where a plan cannot be executed together with theplans of other agents,
due to safety constraints or other type of constraints, is denoted aconflict. The con-
cept of conflict-free shortest-time AGV routing was first introduced by Broadbent et al.
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(a) Head-on conflict.
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(b) Catching-up conflict.
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(c) Plans with head-on conflict inB andC.
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timeÑ
(d) Plans with catching-up conflict inB.

Figure 2.14: Head-on and catching-up conflicts.

(1985). Kim and Tanchoco (1991) make a distinction between two type of conflicts,
which is followed for instance by Maza and Castagna (2005): the head-onconflict and
thecatching-upconflict. In Figure 2.14(a) and 2.14(c) the head-on conflict is illustrated.
This occurs when two agents plan to drive right through each other. In other words, when
trying to execute their planning, a frontal collision occurs. Then, in Figure 2.14(b) and
2.14(d) the catching-up conflict is shown. This occurs when one agent overtakes another
agent on the same lane. This cannot happen without the two agents occupy the same
space at some point in time. Note that these conflicts are defined assuming that resources
have unit capacity. Taghaboni and Tanchoco (1988) model bidirectional lanes as multi-
ple single unidirectional lanes and hence eliminated head-on conflicts on lanes by design.
Möhring et al. (2004) take the physical dimensions of the AGVinto account: an AGV
traveling along one arc mayspill over onto a neighboring arc. To avoid conflicts, the
authors associate a polygon with each arc to represent the area that an AGV uses when
traveling along the arc, and they prohibit the simultaneoususe of two arcs if their polygons
intersect.

Agents that want to take into account other agents while planning can make use of
context-aware planning methods. These methods can be categorized by the phase in
which they detect and solve conflicts. First, methods are available to prevent conflicts
by restraining the behavior of the agents. Second, one can ignore conflicts up to the latest
moment at which the plans are being executed and solve conflicts as they occur. And
third, there are methods that use look-ahead to solve futureconflicts that can be detected
by carefully examining the plans of the agents.

2.2.2 Preventing conflicts

If all agents are controlled by a centralistic program, thisprogram can take into account all
interactions between the agents and strive for the optimal plans for all agents. This is not
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Figure 2.15: Hamiltonian cycle in a transport network. Agents have to move according to
the red arrows and are not allowed to rest. Conflicts can neveroccur. Each (goal) location
is reached in a number of steps smaller than the number of locations. There cannot be
more agents than the length of the Hamiltonian cycle.

useful in practice, because such an approach is not scalableto bigger systems, it can only
be used for toy problems. Another approach is to let each agent plan for itself only. These
self-interested agents can deal with conflicts when they occur, e.g., by contacting a central
unit for conflict resolution or by negotiating with the otheragents that are involved.

Shoham and Tennenholtz (1995) argue that both of these approaches are undesirable
when applied to context-aware routing. Either because centralistic approaches are not
scalable, or because negotiation is a costly time-consuming process. They suggest the use
of social laws, possibly combined with negotiation to solve conflicts, in the latter case as
an attempt to minimize the amount of communication required.

Social laws are certain rules, such as traffic laws, that can be used to prevent any
conflicts to occur in a multiple agent system at the cost of some performance. Also, social
laws can prevent as much as possible, not necessarily all, conflicts while still gaining
nearly optimal performance. Shoham and Tennenholtz (1995)applied this in the domain
of mobile robots. An example they give is to construct an Hamiltonian cycle through the
transport network, in their case ann�n-grid, and a traffic law that forces all agents to
follow this cycle and disallow them to rest. In that case, conflicts simply cannot occur
(assuming they all travel at the same speed). The performance is not very well, however.
It takesOpn2q steps to reach a goal location on then� n-grid. Note that the rows or
columns in these grid networks can, for example, model lanesin a supermarket. This
traffic law can be applied to non-grid transport networks as well, see Figure 2.15.

After this simple example they propose a somewhat more complicated set of social
laws that achieves a better performance on grid networks. This is done by putting a coarser
grid on top of the original grid network. The coarser grid canthen help to avoid having to
follow a Hamiltonian cycle for a long time. For these traffic laws, given that there exists a
plan oft steps in the system with only a single agent, the number of steps to reach a goal
on then�n-grid is at mostt�2n�opnq. The main drawback of this approach, however,
is that it must be assumed that the number of agentsm is fairly limited, i.e.,m�Op?nq.
For systems wherem�Opnq Shoham and Tennenholtz (1995) present a final set of traffic
laws that allows an agent to reach each arbitrary goal within4n steps.
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To conclude, social laws can really be helpful as a means to minimize the number of
conflicts that need to be solved, but one can often not solely rely on them as that would
imply a serious limitation on the number of agents allowed inthe system.

2.2.3 Solving conflicts during execution

Another way of dealing with conflicts is to ignore them until the very last moment, namely
until the plans are being executed and the conflict is present. The advantage of this ap-
proach is that a minimal amount of planning is required, as one simply does not take
conflicts into account in the initial planning. The downsideof this is that the quality of
the resulting plans might be inferior. However, at least in incident-rich environments, it
is questionable whether solving conflicts in advance is of any use. Later in this thesis
experiments will provide empirical evidence with respect to these questions.

In this section two examples of approaches where conflicts are solved during execution
are given. The first example is AgileFrames, where agents arecontrolled by static scripts
that tell the agents what to do. The other example is a basic routing approach, based on
a shortest-path algorithm. In this approach, the agents simply traverse a shortest path to
their destination location, and solve conflicts along theirways as they occur.

2.2.3.1 AgileFrames

An example of an approach that solves conflicts during execution is AgileFrames
(Lindeijer, 2003; Lindeijer and Evers, 1999; de Feijter, 2006), a logistic modeling frame-
work that is designed with flexibility, adaptability, scalability and communication abilities
in mind. Agents execute static scripts to move through a transport network modeled using
resources. Such a script is a sequence of claims and releasesof these resources. Conflicts
are solved during execution, at the time they occur, and are ignored during planning.

The routing scripts are a small program that move an agent from a specified source to a
specified destination resource. In case the scripts are static and non-preemptive (the agents
cannot be interrupted while executing the script), it is notpossible to ensure deadlock-free
execution, unless there are special restrictions (for example, all agents follow a Hamilto-
nian cycle as described in Section 2.2.2).

AgileFrames is inspired by the airport of Amsterdam and new container terminals
at the port of Rotterdam. It models the infrastructure with resources that have capacity.
Agents are routed through this infrastructure by use of static scripts, that can be proven to
ensure minimum safety distances between the agents.

AgileFrames consists of several components, namely Services, Traces and Forces.
Services, an acronym of Service coordination and engineering system, defines the client-
system interface and contains the logistic planning and scheduling.Forcesprovides means
for the functioning, the control, and the feedback of the real operations. Although there
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Ticket ticS = null; � declares a Ticket variable reference.
ticS = new PrimT(S); � creates a primal Ticket on semaphore S.
ticS.insist(); � waiting request on ticket ticS, resembles Dijkstra’s wait().
doA.exec(); � initiates action for this actor and wait for its termination.
ticS.free(); � return of the capacity, resembles Dijkstra’s signal-operation.

Figure 2.16: Traces script fragment for a one-direction track, obtained from
Lindeijer and Evers (1999).

thus is a special component for the logistic planning and scheduling, the bulk of work in
the AgileFrames project is not on planning but on the final component named Traces.

Traces, short for traffic control and engineering system, concernsthe control of con-
flicting use of shared facilities such as traffic infrastructure and is designed to meet the
agility requirements and to handle high traffic intensitiesat any scale. Locations in the
traffic infrastructure are modeled by resources and agents do not communicate with each
other. Semaphores project the overload of these resources by agents.

In Traces, the routes of agents are programmed using scriptsthat are written in the
Java language. See Figure 2.16 for an example. In this code fragment, semaphoreS
represents the freely available capacity of an infrastructure resource (e.g., a piece of a
road). The ticket created in the script is a means to place a request on this semaphore.

The ticket in this example was a primitive ticketPrimT. That is a simple ticket just
waiting for access on the semaphore. In Traces, there existsother types of tickets. For
exampleSelT, a select-ticket. With a select-ticket, an agent can get access to one out
of multiple different semaphores, whichever has free capacity available first. Also, there
is a collective ticketColT, which can be used to get credit from multiple semaphores
simultaneously.

Priorities can be handled in different ways, the default being First-In-First-Out. An
overview is given in Table 2.17. Furthermore, a semaphore guards multiple so-called
access lines. Access lines are a means to prioritize tickets. Again, there are several
mechanism to prioritize tickets. There is aBasicSem for the case a semaphore has only
one single access line. There is aRankedSem, where the access lines are ordered and
higher ranked access lines always take precedence over lower ranked access lines. A
CyclicSem schedules the access lines in a cyclic way, whichCyclixSem also does,
but the latter makes sure access is exclusive, i.e., an agentonly gets access when there are
no agents on other access lines that got access to the semaphore already. Finally, there is
aVariSem type of semaphore that can use user-programmed procedures.

AgileFrames claims to be more than a simulation tool. Its developers refer to it as an
operating system. The argument is that it can control realistic agents in a real setting. The
Traces component is rich and well documented. About the Services (especially referring
to the planning and scheduling methods) and Forces components less information seems
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Queue discipline Explanation

First-In-First-Out The first agent that claims, goes first.
Smallest claim first Similar toshortest processing time firstfrom production

logistics.
Last-In-Last-Out Similar to a stack, the last agent takes precedence.
Randomly selected Uniform-randomly over all (actually, the first so many tickets

as there was capacity remaining) tickets.

Table 2.17: Traces priorities.

to be available. Implementation in a laboratory demonstrates its ability to control real-life
autonomous guided vehicles. Due to the absence of robust (re)planning and scheduling
methods, a deadlock-free situation cannot be guaranteed without special restrictions to
the transport network and the behavior of the agents. Also, no research has been done on
its ability to recover from incidents.

2.2.3.2 Basic routing

If there were no other agents and no incidents, a rational agent would drive a shortest path
from its current location to its destination location. Hence, the basis of route planning is a
simple shortest-path planning algorithm. Like here, shortest-path planners are often used
as part of a more complex question and must often be done in real-time. Although the
variety of shortest-path planners usually provide the sameresults (i.e., they return a path
of the same minimal length), it is important to make a well considered choice as this can
significantly speed up a system, which is important for real-time applications.

Simple shortest-path algorithms The first stage in the traditional approach is to gen-
erate shortest paths along the pickup and delivery locations of the agent. To compute
these paths the agent uses a basic shortest path algorithm, such as Dijkstra (1959). In this
section, the best-first search algortihm A* is also described, becase it is more similar to
the context-aware routing algorithm described later.

Algorithm 2.1 describes the A* algorithm. The A* is a well-known best-first search
algorithm in Artificial Intelligence (Hart et al., 1968; Russell and Norvig, 1995). It main-
tains a priority queueQ that contains partial solutions. The queue is organized such that
the best partial candidate solution is at front; hence the name best-first. The estimated
value of a candidate solution is the sum of the costs of the partial path made so far and a
heuristic function that estimates the costs required to complete the partial solution. This
heuristic function ensures that the A* algorithm expands asfew nodes as possible, making
it the algorithm with the least number of iterations. Satisfying some restrictions on the
heuristic, the A* algorithm iscompletein the sense that if a solution exists, it will always



36 Operational Transport Planning in a Multi-Agent Setting

Algorithm 2.1 A* shortest-path algorithm.

1: function A*( v PV,s,d P N, t P R�)
2: Pre: Vehiclev, sources, destinationd, and departure timet.
3: Post: Shortest route and schedule froms to d for vehiclev starting at timet.
4: Q�tsu
5: �n P Nztsu : lpnq �8
6: lpsq � t � initialization
7: while Q�∅ do
8: n� argminqPQ lpqq�hpqq � select most-promising candidate
9: Q�Qztnu

10: if n� d then
11: return route and schedule computed from labels � ready
12: end if
13: for all pn,n1q P tpn,n2q P E : lpn2q ¡ lpnq� traveltimepp,v, , qn, lpnqqu do
14: lpn1q � lpnq� traveltimepv,n, lpnqq � expanding successors
15: Q�QYtn1u
16: end for
17: end while
18: return no route possible
19: end function

find the shortest (optimal) path from source to destination.

For basic shortest-path planning, the A* algorithm is not the best option. It requires
fewer iterations than most other algorithms, however, the time required per iteration rel-
atively long. Post (2004) presents an overview of several faster shortest-path algorithms.
These algorithms do not maintain a sorted queueQ. Instead, they visit resources more
than once, resulting in more, but faster, iterations. Zhan (1997); Zhan and Noon (1998,
2000); Cherkassky et al. (1994) take a closer look at the datatypes used to implement the
algorithm, which is proven to be important. Finally, Cherkassky et al. (1994) notes that
the graph representation used is also crucial to the performance of the algorithms. They
showed that the best graph representation to use is Forward Star representation.

Algorithm 2.1 presents the A* algorithm, because it can bestbe compared to more ad-
vanced shortest-path algorithms later in this chapter. Function traveltimepp,v, , qn, tq com-
putes the minimal traversal time for vehiclevPV to traverse locationn P N when starting
at timet. It takes into account the maximum allowed driving speed at this resource, the
maximum driving speed of the transport resource and the distance of the infrastructure
resource.

Operational conflict resolution After each agent computed a shortest path to execute
its transportation requests, it is of course likely there are some conflicts. Sometimes, more
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agents plan to claim a resource at the same time than is possible given the capacity of the
resource.

To overcome this problem the basic routing approach uses operational conflict reso-
lution. This form of conflict resolution is similar to the useof traffic rules, such as traffic
arriving from right precedes, or intelligent traffic lights. Each time a conflict is detected
during the operational phase, a heuristic is used to prioritize the agents for entering the
popular infrastructure resource.

Many different alternatives are available to implement such resource usage rules. A
valuable overview on scheduling problems by Morton and Pentico (1993) is used to sup-
port the selection of heuristics that is used in Chapter 5.

Morton and Pentico (1993) distinguish between (advanced)dispatchheuristics andre-
leaseheuristics. Dispatch heuristics schedule forward in time at each choice point (when
timing, routing is done, etc.) by calculating priority values according to some rule and
the highest priority is chosen.Advanceddenotes that due time problems and critical re-
sources are forecasted and taken into account a priori. Their overview, though modified
to the transportation domain, of dispatch heuristics includes:

• Critical ratio, uses the ratio of required lead time to current slack to determine the
priority of a task,3

• (Weighted) COVERT4, if the slack is much greater than the lead time, the priorityis
0; it rises linearly, up to a certain maximum for this task, asthe slack goes to zero,

• (Weighted) early/tardy, compares the (weighted) sum of earliness and tardiness of
all tasks,

• SCHED-STAR, if the slack is negative, the job is sure to be tardy and has full
priority; priority decreases exponentially with the number of average processing
time lenghts available until its due time.

Executing tasks immediately when they arrive in the system is not always the best thing
to do. It might improve the performance to release tasks somewhat later, as other tasks
could arrive that should be dealt with first. Morton and Pentico (1993) acknowledge this
and list the following release heuristics:

• Immediate release, provided as a benchmark,

• Average queue time release, releases a task to an agent at thedue time of the task
minus the amount of time the agent is idle,

3Lead time is the estimated time required to complete a task (e.g., deliver the freight) from the moment
the task is known to the system. Hence, this time includes planning, waiting, etcetera.

4COVERT is short for Cost over Time.
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• Queue length release, estimates a release time to an agent based on the number of
tasks that are already assigned to this agent.

Garrido et al. (2000) describes the notion ofslack probability, defined as:

PspOiq � 1� δi

φi�σi�1
,

where the duration of operationOi is δi , and its earliest finish time and earliest start time
areσi andφi respectively. Note that slack is defined in Operational Research asφi �σi ,
the amount of time the operation can be delayed without delaying anything else. If the
operation has only one possible start time, thenφi�σi is about equal to the durationδi and
PspOiq is approximately 0. Otherwise, the more slack there is, the morePspOiq approaches
to 1. An operation is more conflictive than another if its slack probability is minor.

2.2.4 Solving conflicts in advance

Another approach when it comes to context-aware planning and scheduling is the idea
to transform the search for a conflict-free plan to Job Shop Scheduling with blocking
(Hatzack and Nebel, 2001). In this approach, the problem is split into two phases. In the
first phase, a route is determined for each agent. In the second phase, one by one the
agents create a schedule, which determines the times at which the subsequent resources
in the route are claimed. An appropriate delay is inserted into the schedule whenever a
conflict is detected. Hence, conflicts are solved after determining the route (as opposed to
the previously mentioned time-window graph routing method), but prior to the execution.
An advantage of this approach is that heuristics known to perform well for Job Shop
Scheduling with blocking can immediately be applied to finding conflict-free routes for a
set of agents.

Also, time-window graph routing(Kim and Tanchoco, 1991) fits in this category.
Time-window graph routing is an approach that integrates free-path routing (as opposed
to fixed-path routing, where a fixed path is followed from source to destination) with
conflict-resolution. The agents make public reservations for their plans on a first-come-
first-served basis and, hence, performance (especially individual, but also for the total
system) depends on the order in which the agents plan.

2.2.4.1 Two phases approach

The two phases approach separates the process of determining a route along the pickup
and delivery locations and computing the schedule times, i.e., the times at which each
of the locations will be visited. In the first phase, a route isdetermined for each agent.
In the second phase, one by one the agents create a schedule that does not conflict with
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previously computed schedules. At the end of the second phase, all agents have a conflict-
free plan and, if the plans are executed exactly as specified,deadlocks cannot occur.

An important difference with the previous approach is that conflict-resolution is ap-
plied before the individual plans are executed. In fact, this conflict-resolution can be
considered as a kind of plan repair, modifying individual plans if they are in conflict. For
example, Broadbent et al. (1985) employ a simple shortest-path algorithm to find a set of
initial routes. In case of catching-up conflicts, some agents are slowed down; for head-on
conflicts, an alternative route is found that does not make use of the road at which the con-
flict occurred. Broadbent’s algorithm can be used both on unidirectional and bidirectional
infrastructures, but in the latter case it need not find the optimal solution.

The approach proposed by Hatzack and Nebel (2001) also can beconsidered as a two-
phase approach to this problem. In the first phase, the individual routes are chosen, which
they assume to be fixed. Then for the second phase, they pointed out a correspondence
between computing conflict-free schedules for the agents and a particular scheduling vari-
ant calledJob Shop Scheduling with blocking. In this second phase it is ensured that the
constraints imposed by the resources are satisfied. To describe this correspondence the
Job Shop Scheduling with blocking problem must be defined.

Scheduling is concerned with the optimal allocation of a setR of scarce resources
to a set of activities (jobs)J over time. Each jobj P J requires some specific setRj �
R of resources and for each resourcer P Rj the durationtr, j needed forj to user is
specified. Typically, each resourcer can be used only by one jobj at the same time. A
solution to such a problem is aschedule, i.e., an allocation of intervalsrσi,k,φi,kq to each
job j i P J for using resourcer i,k such that the constraints (non-overlapping and minimal
duration) are satisfied. In ajob shopscheduling problem each jobj i consists of asequence
of ki operationsoi,1, . . . ,oi,ki , where operationoi, j needs resourcer i, j P R for pi, j time
units, with r i, j � r i, j�1 for i � 1, . . . ,k j�1. Blocking means that a jobj continues to
claim resourcer after processing, if the next resourcer 1 it needs is not available. During
that time, no other job can use resourcer. Definition 2.2 formally defines the Job shop
scheduling with blocking problem.

Definition 2.2 (Job shop scheduling with blocking)Given a setJ of jobs and a setRof
resources, find a schedule, i.e.,rσi,k,φi,kq to each jobj i P J for using resourcer i,k that is a
solution to the following optimization problem.
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Maximize objectives

Subject to

σi, j ¥ release_timepi, jq, (2.26)

φi, j �σi, j ¥ pi, j , (2.27)

φi, j � σi, j�1, (2.28)

µi, j � µr,sñ oi, j � or,s_rσi, j ,φi, jsX rσr,s,φr,ss �∅, (2.29)

µi, j � µr,s�1^µi, j�1� µr,sñ φi, j � σr,s�1. (2.30)

In Definition 2.2 for Job Shop Scheduling with blocking Constraint 2.26 ensures that an
operation is not scheduling before the job it belongs to is released. With Constraint 2.27
no operationoi, j is scheduling in an intervalrσi, j ,φi, js smaller that its processing time
pi, j . Constraint 2.28 specifies that a job always claims a machine(the blocking prop-
erty). Then the latter two constraints are to prevent conflicts. Constraint 2.29 ensures that
two different operations scheduled on the same machine do not have overlapping time in-
tervals and Constraint 2.30, which is according to Hatzack and Nebel a new constraint in
scheduling literature, prevents a deadlock situation where two jobs with opposite machine
routing face each other.

Now the similarity with the transportation problem discussed above is clear: let the
jobs correspond to agentsa P A that have to execute a routeRta as a sequence of opera-
tions. Each operationpr i , tiq in fact is a request for using the resourcer i during the time
interval rti, ti�1q. A feasible conflict-free schedule is aset of agent schedulestSdauaPA

that is conflict-free. Scheduling heuristics for job-shop scheduling problems, therefore,
can be used to compute agent schedules in which resources areclaimed by at most one
agent at a time thereby avoiding any resource conflicts from agiven settRtauaPA of agent
routes.

In their paper Hatzack and Nebel applied a fast delay minimizing heuristic to ob-
tain such a set of agent schedules. This heuristic incrementally inserts jobs/operations
in a first-come-first served manner into the schedule. Besides this makespan minimizing
heuristic many other heuristics can be used, for instance one that considers the profits that
come with the task.

From job shop scheduling to route planning

Besides the suggestion to transform the fleet routing problem to Job shop scheduling with
blocking, Hatzack and Nebel also described Algorithm 2.2 asan example implementation
of their idea. This fast job-shop scheduling heuristic computes a route and a schedule
for an agent that takes into account the current reservations of all other agents. It is
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r i, j

Time

Arrival time of oi, j

Figure 2.18: The set of potential start timesΣi, j considered for operationoi, j is the earliest
possible time together with all later end times of reservations of other agents.

then applied to all agents sequentially, in first-come-first-served order (this is done by
the Autocontroller). It is neither optimal (for the fleet of agents) nor polynomial-time
(even for a single agent), but in their experiments the algorithm produced reasonably
good results, and performed very efficiently.

The AutoController procedure in Algorithm 2.2 shows this sequential scheduling of
agents. Procedure ScheduleActivity5 is concerned with the scheduling of each individual
agent. Figure 2.18 illustrates the start times that are attempted for each operationoi, j on
resourcer i, j . The earliest possible start timeσ�

i, j is the finish timeφi, j�1 of the preceding
operation or the release time of jobj i if j � 1. Now, the set of finish timesΦµ j of
all operations scheduled at machineµ j , analogous to infrastructure resourceµ j in the
transportation domain, can be defined asΦµ j � tφr,s : or,sPSµ ju, whereSµ j is the schedule
of all operations at machineµ j . The set of starting times considered, as illustrated by
Figure 2.18, is thenΣi, j � tσ�

i, juYtφ PΦµ j : φ ¡ σ�
i, ju.

The predicateInsertablepS,oi, j,σq, used by Algorithm 2.2, is true if and only if(i) in
the given scheduleSno other agent has a reservation for resourcer i, j that overlaps intervalrσ ,σ � pi, j s, (ii) the agent can wait at the previous resourcer i, j�1 also duringrφi, j�1,σ s,
and(iii) there is no head-on conflict with another agent (i.e., no exchange of machine with
any other operation at timeσ ).

The last attempted start time is beyond the last reservationof all agents, which clearly
indicates that the algorithm always terminates (that is, assuming that an agent can always
wait in its current location). The idea is that the current operationoi, j is scheduled at
time σi, j and then the rest of the operations of jobj i are tried to be scheduled by using a
recursive call. If this call succeeds, the procedure is doneand returns success; otherwise,
the next start time is attempted and a new recursive call is required.

No detailed results are presented in Hatzack and Nebel (2001). The authors claim it
is suitable for very fast approximations, to do fast time simulations and the performance
is similar to that of humans. Their concluding remarks include that, although the al-

5The original version of Line 15 of Algorithm 2.2 (Hatzack andNebel, 2001) contains a typo that is
corrected here.
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Algorithm 2.2 Hatzack and Nebel’s routing algorithm.
1: procedure AUTOCONTROLLER( j1, . . . , jn)
2: Pre: p j1, . . . , jnq is a sequence of jobs wherej i � poi,1, . . . ,oi,kiq.
3: Post: All jobs in p j1, . . . , jnq are scheduled and free of conflicts.
4: S�∅

5: for all j i P t j1, . . . , jnu do
6: SCHEDULEACTIVITY pS,oi,1q
7: end for
8: return S � returns feasible scheduleS
9: end procedure

10: procedure SCHEDULEACTIVITY (S,oi, j )
11: Pre: Up to operationoi, j�1 scheduleS is a conflict-free schedule.
12: Post: Schedules operationoi, j and beyond into scheduleS.
13: if j ¤ ki then
14: inserted� f alse
15: Σi, j � tσ�

i, juYtφ P Φµi, j | φ ¡ σ�
i, ju � compute potential start times foroi, j

16: while Σi, j �∅^ inserteddo
17: σ �minΣi, j � get next potential start time
18: if INSERTABLEpS,oi, j ,σq then
19: σi, j � σ ;φi, j � σi, j � τi, j � assign start/end time tooi, j

20: if j ¡ 1 then
21: φi, j�1� σi, j � adapt end time of preceeding operation
22: end if
23: inserted� SCHEDULEACTIVITY pS,oi, j�1q � continue recursion
24: if  insertedthen
25: S� Sztoi, ju
26: if j ¡ 1 then
27: φi, j�1� σi, j�1� τi, j�1 � reset end of preceeding operation
28: end if
29: end if
30: end if
31: end while
32: else
33: inserted� true � last operation of taskj i has been inserted
34: end if
35: return inserted
36: end procedure
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gorithm involves backtracking, it hardly never occurs. Thealgorithm can however be
shown to have exponential time complexity. The authors havebeen asked for their data
or implementation, in order to reproduce their experiments. However, due to disclosure
agreements they were not able to publish the problem instances they used nor their exact
implementation.

2.2.4.2 Context-aware routing

There are also approaches that aim at the integration of the route planning and the conflict-
resolution process.Context awarenessrefers to the fact that an agent has to be aware of
the consequences of the route planning by other agents sincehis individually optimal
route choice might be seriously affected by the route choices of other agents.

Typically, context-aware routing approaches consider allpossible routes from a source
to a destination location while considering reservations of other vehicles. For example, the
algorithm proposed by Huang et al. (1993) finds a path throughthe (graph of) free time-
windows on the resources, rather than directly through the graph of resources. Huang’s
algorithm is optimal both for unidirectional and bidirectional networks, but it assumes
unit capacity for all resources. Fujii et al. (1989) combinethe search through free time-
windows with a heuristic that calculates the shortest path from the current resource to
the destination resource, assuming no other traffic. The solution method proposed should
result in an optimal, polynomial-time algorithm, but the description of the algorithm is not
entirely correct. Additionally, the authors do not provideany complexity analysis of the
algorithm. The work of Kim and Tanchoco (1991) is similar to the work of Fujii et al., but
their treatment of the problem and the analysis of their algorithm is more comprehensive.
Kim and Tanchoco’s algorithm finds the (individually) optimal solution for both uni- and
bidirectional networks, and they give anOpn4v2q time complexity for their algorithm,
wheren is the number of agents in the system, andv is the number of resources in the
infrastructure network. Due to this relatively high run-time complexity (especially given
the limited computational resources in the early 1990s), Taghaboni-Dutta and Tanchoco
(1995) developed an approximation algorithm that decides at every intersection to which
resource to go next, based on the estimated traffic density ofthe resources from the current
intersection to the destination. The authors show a small loss of plan quality, but they
claim that the algorithm consumes significantly fewer computational resources; however,
they do not quantify the run-time complexity of the approximation algorithm, nor do they
present any CPU cost comparisons.

The idea of time-window graph routing is, instead of routingthrough locations in a
graph as a basic shortest-path algorithm would, to route through a free time-window graph
(see Figure 2.19). For each location, a set of disjoint free time-windows is computed from
all known reservations that exactly specifies the time-windows at which the load of the
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(a) Transport network. Arcs represent
connections between locations. The time
intervals are reservations of other agents.
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(b) Free time-window graph. The red intervals are reser-
vations by other agents. Connections specify the reach-
ability relation between free time-windows.

Figure 2.19: Transport network and free time-window graph.

location is smaller than its capacity. Furthermore, a reachability relation must be defined
that specifies which free time-windows at one location can bereached from which free
time-windows at another location (similar to arcs in a normal graph). Applying a basic
shortest-path algorithm on this time-window graph resultsin a context-aware plan for the
original instance. This plan is optimal, given the reservations of all other agents do not
change.

Let us look at the example depicted in Figure 2.19. The task isto route from source
locationrs to destination locationrd starting at timet � 0, either by traveling via location
r1 or via locationr2 and taking into account the specified reservations of other agents.
At first sight, it seems quicker to traverse via locationr1, because locationr2 is already
reserved up to timet � 6. However, the journey cannot continue then because of the
reservationr0,5q in locationrd and the agent is not allowed to wait in locationr1 due to
the reservationr2,8q over there and, hence, the agent must wait in resourcers until time
t � 8 if it desires to travel the upper route. The free time-window graph gives somewhat
more information. There is only an arc from locationr1 to locationrd from the free time-
window r8,8q, so one can immediately infer that the upper route has costs greater than 8
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and the lower route is quicker (assuming the all locations have equal traversal times). The
connection fromrs to the first free time-windowr0,2q in r1 is in fact useless (and can be
discarded) if this free time-window has no outgoing arcs, except if locationr1 is the goal
location.

This context-aware method can be used by all agents in a sequence resulting in a set
of conflict-free plans. That this leads to sub-optimal performance for the total system is
no surprise, as the final plans depend on the order in which theagents planned; in general,
planning earlier leads to a more efficient plan for each individual agent, but the method
does not specify in which order the agents should plan to optimize the performance of
the total system. Of course, there exist methods that attempt to improve on this arbitrary
ordering of when agents plan. These methods can also benefit from using time-window
graph routing to quickly create a conflict-free plan.

The execution of transportation plans often differs from the constructed plans. This is
because of unforeseen events, such as container ships arriving late, orders being cancelled,
or modeling inaccuracies. The next section deals with theseunforeseen events, which we
call incidents.

2.3 Incident management

An event that can potentially render a current plan infeasible, because it was not antic-
ipated into advance usually due to a malfunctioning system or faulty component of this
system, is referred to as anincident.

The event of a system or some of its components being faulty for a period of time (the
repair time) is referred to as anincident. Incident managementis a field of research that
attempts to take into account incidents and develops systems where performance degrades
as few as possible when the number of incidents increases.

In this section a nice experiment by Beamon (1998c) is presented that illustrates why
reliability must be taken into account in early stages (already in the design phase of a sys-
tem). The termperformabilityis used to denote that performance and reliability are mea-
sured simultaneously. After the necessity of performability is illustrated, known methods
are described to deal with incidents.

2.3.1 Performability

Research on the performance of AGV systems often had the underlying assumption that
all the components are going to last life long. In reality, these components are not com-
pletely reliable and are subject to failures over a period oftime. To give an example, road
intersections generally reduce the reliability of the system by adding potential sources of
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(A) No shortcuts (B) One shortcut (C) Two shortcuts

Layout

Flow Path
Optimization

Model
TTD 544 488 484
FTP 8.7% 10.9% 14.0%

FDU Index 63.1 62.7 80.3

Table 2.20: More shortcuts do lead to a decrease in total travel distance (TTD). However,
the unreliability measure (FTP) has increased due to the additional cross-overs. The flow-
distance-unreliability index (FDU) is minimized for layout B (Beamon, 1998c).

failure. The reason for this is that guide path requires somemechanical branching to en-
able vehicles to choose their destination and the fact that intersections allow for collisions
to occur. Studies have shown that incorporating reliability analysis in the design of guide
paths increases the performance of the system (Beamon, 1998b,c,a).

Beamon (1998c) describes guide paths for an AGV system, see Table 2.20, where
layout A has no shortcuts, layout B has a single shortcut, andlayout C with two shortcuts.
The second row of the table depicts the optimal path directions based on the Flow Path
Optimization Model (Kaspi and Tanchoco, 1990). Note that the exact set of pickup and
delivery requests together with the used distances of the edges in the network are also
mentioned in Beamon (1998c), but are omitted here.

The total travel distance (TTD) is a lower bound on the total travel costs computed
as the sum of distances from pickup to delivery of all transportation requests. The total
flow that is not delivered correctly is given by the failure trip percentage (FTP), which is
defined the percentage of flow from pickup to delivery that fails due to unreliable compo-
nents in the infrastructure.

The total travel distance is minimized on layout C with two shortcuts. At the same
time, the unreliability measure is maximized for this guidepath. Hence there is a trade-off
between reliability and the objective function. Beamon (1998c) suggests the use a flow-
distance-unreliability index (FDU) that is minimized for layout B in the example. The
flow-distance-unreliability index is defined as the sum of the flow, distance and unrelia-
bility measure for all pickup and delivery pairs.
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2.3.2 Incidents

There are several different sources of incidents to be distinguished. Incidents can refer
to failure, such as communication failure between AGVs and acentral planning system,
break-down of a mobile entity (engine failure) or failures in the transport network (e.g.,
due to traffic accidents). Other incidents refer to modifications of transportation requests.
Even the arrival of new transportation requests can very well be regarded as incidents,
because the current planning is rendered infeasible for nottaking into account these new
transportation requests. In an unpublished manuscript, Davenport and Beck (2000) de-
scribe a similar list of causes for uncertainty.

Incidents that refer to failure are normally represented by(i) the malfunctioning ob-
ject, (ii) an interval of time specifying the time of failure and the repair time, and(iii) the
impact or severity of the incident. For mobile entities the severity can be represented by
a percentage denoting the percentage of the normal traversal speed that is in effect during
the incident.

Modification or new transportation requests are usually taken into account by using
online planners, i.e., planning systems that have a certaindynamism that enables them
to react to these changes and adapt the plans accordingly. Failing communication limits
the ability to cooperate and assign or re-assign new transportation requests. Sometimes
a decrease of speed of the mobile entities is also enforced during these communication
incidents.

2.3.3 Incident management methods

Due to the experiment of Beamon flow path optimization modelswere adjusted to take
into account reliability during guide-path design. But also during planning and execu-
tion, methods have been developed to take into account disturbances. The real world is
not so stable, many disruption and task modifications occur,leading to the necessity of
incident management methods. Incident management methodscan be distinguished into
pro-activeandreactivemethods. Pro-active methods attempt to create robust schedules,
while reactive methods recover from incidents at the momentthey occur.

One pro-active approach to incident management is to generate robust schedules that
are able to absorb a certain amount of disruptions without the need for replanning. Gao
(1995) describes a technique calledtemporal protection. For each location and vehicle
historical statistics are maintained about its reliability. Then, according to this data the
duration of actions, such as drive, load, etc., are extendedwith some temporal slack.

Davenport et al. (2001) developed a superior method calledtime-window slackor fo-
cused time-window slack.Instead of hiding the temporal slack in the durations of ac-
tions the time-window slack method modifies the problem definition a little, such that
the scheduling algorithm can reason about the slack. For instance, the scheduling can
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sometimes be more flexible by shifting the temporal slack here and there. For the focused
time-window slack method, the temporal slack depends on when the activity is sched-
uled. Activities that are scheduled when the probability ofan incident is greater, e.g.,
approaching the wear-out period, get more slack added.

Van der Krogt (2005) presents reactive plan repair methods for both single-agent and
multi-agent systems. His focus was on repairing plans without computing them from
scratch after an incident occurs and requiring as few changes as possible such that com-
mitments to other parties are little affected. After extending the Action Resource Formal-
ism (ARF, see de Weerdt et al. (2003a)) with gaps and incidents (a gap in a plan can result
from an incident), refinement planning approaches are surveyed and developed. This ap-
proach makes use of a library with plans. At the moment a plan rendered infeasible, there
is a plan with a gap. The plan library is searched for elementsthat can be used to fill up
the gap.

Another example of reactive methods can be found in the field of robot path planning.
Stentz (1994); Koenig and Likhachev (2002) worked on robot path planning in partially
unknown environments. TheLifelong Planning A*andD* variants are similar to the well-
known best-first search A* algorithm, but try to improve on this by avoiding having to start
from scratch when a small disturbance occurs. For example, while a robot approaches
towards its goal location it obtains new information from sensing its local environment.
This data might change the travel costs (e.g., suddenly it detects a wall). In that case,
a basic shortest-path algorithm would have to restart from scratch. The D* or LPA*
algorithms are able to locally propagate this change in costs, using stored data from the
previous computation, and are potentially faster in computing the new optimal shortest
path.

This section described the importance of taking reliability into account, the classical
approaches to pickup and delivery problems do not suffice in practice. There is a trade-off
in costs between having a reliable operation with sub-optimal performance (when there
are no failures) and an unreliable operation that is cheap, but where performance degrades
in case of incidents. At the very least, system designers have to be aware that there often
are components in the system that can be malfunctioning at a certain point in time. Several
aforementioned techniques for taking incidents into account are available for this purpose.

2.4 Summary

This chapter presented an overview on classical pickup and delivery transportation prob-
lems and described several of the many different solution techniques. While evaluating
these techniques, it becomes apparent that there are two important problems that are not
covered.

First, the classical approaches often abstract from route planning by using a distance
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matrix, which specifies the distance between all pairs of locations. The context-aware ap-
proach models the transport network in greater detail, suchthat bottlenecks in the trans-
port network can be identified (many reservations for the same resource) and congestion
can be minimized. But the existing context-aware approaches are computationally expen-
sive and, hence, cannot be applied to large systems. We will improve on this aspect of
context-aware routing as well as its flexibility.

Second, it is usually assumed the components of a system function flawlessly. Sec-
tion 2.3 elaborates on the importance of taking into accountreliability and robustness. In
this thesis, incidents play an important role.

The next chapter describes a framework for pickup and delivery transportation, which
also includes non unit-capacity resources and, hence, a more general definition of a con-
flict.
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Chapter3
A framework for multi-agent transport
planning

This chapter proposes a new framework for pickup and delivery transportation that can be
applied when mobile entities carry out transportation requests. Transportation plans have
to be constructed to ensure that these requests are correctly and efficiently executed and
their deadlines are met.

Usually, there is a common transportation network where these plans are executed.
Due to limited capacities of this network, these individualtransportation plans might in-
terfere with each other. An example application of the framework presented in this chap-
ter is modern material handling systems, which make more andmore use of autonomous
guided vehicles in manufacturing plants, warehouses, distribution centers, and terminals.

The framework distinguishes transportation agents and infrastructure agents. Trans-
portation agents make transportation plans, while infrastructure agents make reservation
plans for infrastructure resources (lanes, crossings). Inmaking their transportation plans,
transportation agents query infrastructure agents about the availability of parts of the in-
frastructure they need. This extends the approach of Kim andTanchoco (1991) by allow-

51
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ing infrastructure agents to use other reservation policies than a simple first-come-first-
serve policy and, e.g., to take into account priorities of agents. Moreover, this approach
can also be used to deal with incidents by informing transportation agents about delays
and unavailability of parts of the infrastructure, enabling them to replan their routes.

This chapter is organized as follows. At the beginning the model is described, which
consists of the transport network, infrastructure and transport resources (the mobile en-
tities), requests, plans, and incidents. Then, the invariants of this model are described,
followed by the requirements that define when a transportation plan is feasible. After that,
a set of mobile entities is considered and the exact meaning of a conflict in our framework
is introduced. Subsequently, a section is devoted to agents. The responsibilities of the
infrastructure agents and transport agents are described.Finally, performance indicators
are presented that can be used to measure the performance of the mobile entities (i.e., the
quality of the transportation plans) and the system as a whole.

3.1 Ingredients

In this section the main ingredients of the transportation model are described. First, the
transport networkis modeled usinginfrastructure resourcesthat have several properties
(e.g., capacity, distance, maximum speed). Another type ofresources aretransport re-
sources. Transport resources, which have a maximum driving speed and loading capacity,
are the mobile entities moving around though the transport network. Together the infras-
tructure resources and transport resources form the set of resources in the model.

Second, there are the transportationrequests(also referred to astasks) that represent
a customer request for transporting a freight (or perhaps a passenger) from a source to
a destination location. The customer specifies a time-window (i.e., an interval in time)
for both the pick-up and the delivery event. Furthermore, a reward function is given for
each transportation request, that defines the reward for theresponsible agent. If the agent
succeeds in executing the pick-up and delivery event insidethe specified time-windows,
the reward for this agent is typically maximized. Violationof one of these time-windows
decreases the reward as specified by the reward function.

Third, an important aspect of our model areincidents. There can be many different
types of incidents, among others, customers that change or retract transportation requests,
unexpected traffic jams (predictable traffic jams are not considered to be incidents, be-
cause they can be taken into account during planning), vehicle break-down, communica-
tion failure, etc. In the model it is specified what types of incidents are considered in this
thesis.

The following section describes the transport network and the infrastructure and trans-
port resources.
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(a) Graph representation using nodes
and edges. G � pV,Eq where V �tA,B,C,D,Eu and E � ttA,Bu, tA,Cu,tB,Du, tC,Du, tA,Eu, tB,Eu, tC,Eu,tD,Euu.
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(b) A resource for each node and edge.R�tA, B, C, D, E, AB, AC, BD, CD, AE, BE,
CE, DEu andE � ttA, ABu, tA, ACu, tA,
AEu, tB, BDu, tB, BEu, tC, CDu, tC, CEu,tD, DEu, tE, AEu, tE, BEu, tE, CEu, tE,
DEuu.

Figure 3.1: Graph representation versus resource-based representation of a transport net-
work.

3.1.1 Transport network and resources

Following Hatzack and Nebel (2001) we make use of a non-classic resource-based graph
representation of the transport network by using infrastructure resources. This simpli-
fies, for example, the modeling of intersections. Infrastructure resources represent roads,
road segments, part of an intersection, parking space, etc.Figure 3.1a illustrates a classi-
cal graph representation using a graphG� pV,Eq of nodesV and edgesE. Figure 3.1b
shows the resource-based representationGR� pRinf

,ERq with locationsRinf and connec-
tionsER. Each nodev P V and each edgeeP E correspond to a resourcerv andre in the
resource-based representation. Furthermore, for each edge e� tv1,v2u P E the resource-
based network has connectionstrv1, reu,tre, rv2u P ER. In the resource-based representa-
tion a vehicle always resides in the infrastructure resource – representing space – that it
occupies. These resources have several properties like travel distance, maximum allowed
traversal speed, maximum load, etc, while the edges just define the adjacency relation and
have no properties of its own.

Thetransport network, or infrastructure, represents how the mobile entities (the trans-
port resources) can move around. Transport networkI � pR,ER,kinf

,ktr
,dinf

,sinf
,strq is a

tuple consisting of a set of resourcesR, a directed connectivity relationER (defining which
resources are neighbors), capacity functionsktr andkinf, distance functiondinf, and maxi-
mum speed functionsstr andsinf.

The setR� RinfYRtr of resources is decomposed into the set ofinfrastructurere-



54 Operational Transport Planning in a Multi-Agent Setting

sourcesRinf and the set oftransportresourcesRtr. The infrastructure resources represent
space that can be occupied by the transport resources. A transport resourcev P Rtr repre-
sents a mobile entity, e.g., a vehicle that can move around through the transport network.
The directedconnectivityrelationER�Rinf�Rinf defines which infrastructure resources a
transport resource can traverse to from a given infrastructure resource. Thedistancefunc-
tion dinf : Rinf Ñ R

� gives, for each infrastructure resourcer P Rinf, the positive non-zero
distancedinfprq ¡ 0 it takes to traverse infrastructure resourcer.

For all infrastructure resourcesr P Rinf, thecapacityfunctionkinf : Rinf Ñ N specifies
the numberkinfprq of transport resources that can use resourcer simultaneously. In other
words, for each infrastructure resourcer PRinf

, at any point in timekinfprq is the maximum
number of transport resources in resourcer. For transport resources, there is acapacity
functionkinf : Rtr Ñ N, wherekinfprq is the load capacity of resourcer P Rtr in terms of
freight (see the next section).

The Speedfunction sinf : Rinf Ñ R specifies thatsinfprq is the maximum possible
driving speed at infrastructure resourcer P Rinf irrelevant to which transport resource is
traversing infrastructure resourcer. For a transport resourcev P Rtr, thespeedfunction1

str : Rtr Ñ R specifies the maximum driving speedstrpvq.
In the following section the transportation requests, which form the workload for the

system, is described.

3.1.2 Transportation requests

Transportationrequests(also refered to as orders ortasks) represent the workload for the
system. The set of transportation requests is denoted byO. Each ordero j P O is a six-
tupleo j � p f j ,sj ,τs

j ,d j ,τd
j ,π jq denoting the request to pick up freightf j P F (or perhaps a

passenger) with volumevolp f jq PN at a certain source locationsj PRinf within a specified
time-windowτs

j � rts
j ,1, t

s
j ,2s and to deliver it at a specified destination locationd j P Rinf

within a time-windowτd
j � rtd

j ,1, t
d
j ,2s.

The lowerbound and upperbound of a time-windowτ, as well as other time points in
our model, are modeled as real values inR extended with positive and negative infinity.
The setT � RYt�8,8u contains all possible time points. Positive infinity is added to
be able to specify, for instance, that a pickup or delivery request has no deadline. The set
W � T�T represents all possible time-windows2.

The time required to load and unload freightf j P F is denotedδl p f jq P T andδup f jq P
T, respectively. Assuming that transport resourcev P Rtr has loaded a subsetO1

v � Ov

of the requests assigned to it, the capacity constraint of a transport resource can now be

1In our model the speed and capacity of an infrastructure resource do not depend on the number of
transport resources present.

2A time-windowτ � rt1, t2s PW, t1, t2 P T, for whicht1 ¡ t2, is said to be an invalid time-window.
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specified as
°

o jPO1
v

f j ¤ ktrpvq – the sum of all currently loaded freight is smaller than the
capacity of the transport resource – always holds.

Time valuests
j ,1, t

s
j ,2, t

d
j ,1, t

d
j ,2 P T are continuous, and the time-windows must be mean-

ingful, i.e., it is possible to load within the loading time-window, ts
j ,2¥ ts

j ,1� δl p f jq, it is

possible to unload within the unloading time-window,td
j ,2¡ td

j ,1�δup f jq, and (neglecting
driving time for the moment) it must be possible to unload after the minimal loading time,
td
j ,2¥ ts

j ,1� δl p f jq� δup f jq. An infinite time value indicates it does not matter how early
(�8) or how late (�8) the good is picked up or delivered.

Associated with each requesto j there is a reward functionπ j : W�W Ñ R. If the
actual pick-up and delivery time-windows areτ̆s

j and τ̆d
j respectively,π jpτ̆s

j , τ̆d
j q is max-

imized if the request is executed within its time-windows, i.e., τ̆s
j is during τs

j and τ̆d
j

is during τd
j , and will typically be smaller if one or both of the time-windows of the

transportation request are violated3. Both loading or unloading too early and loading
or unloading too late typically decreases the reward the agent receives for executing the
transportation request.

Finally, there is a load functionLv : Ov Ñ T and an unload functionUv : Ov Ñ T
that, for each transportation requesto P Ov in the set of transportation requests planned
for execution by transport resourcev P Rtr, specifies the time at which the pickup and
delivery takes place,Lvpoq andUvpoq respectively. For all transportation requests to be
executed, it must hold that, for alloPOv, Uvpoq ¡ Lvpoq ¥ t0, wheret0 is the starting time.

There are more restrictions to what a correct plan can look like, which will be de-
scribed later in Section 3.2. The next section describes thenext component of our model,
which is the transportation plan of a transport resource.

3.1.3 Agents and plans

The framework distinguishes transport agents and infrastructure agents. This section in-
troduces both of these agents and their plans as ingredientsof our framework. After the
requirements with respect to conflicts are defined, Section 3.3 revisits infrastructure and
transport agents and describes how the traversal time and reservations are computed ex-
actly.

3.1.3.1 Transport agents

Each transport resource is controlled by one transport agent. This transport agent creates a
plan for the transport resource, which successfully executes all the assigned transportation
requests as efficiently as possible.

3Allen’s interval algebra (Allen, 1983) defines that a time-intervalτ 1 is during time-intervalτ if and only
if time-windowτ 1 does not start before time-windowτ and does not end at a later time.
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A transport resourcevPRtr has a transportation plan that specifies the intended actions
of the transport resource. Such a plan consists of the route the transport resource planned
to traverse as well as the schedule information, which specifies at what time each of the
locations (infrastructure resources) will be occupied by the transport resource.

The routeRtv� prv,1, rv,2, . . . , rv,Nvq for transport resourcevPRtr through infrastructure
I is represented as a sequence ofNv infrastructure resources such that resourcesrv,i and
rv,i�1 are connected to each other, i.e.,prv,i , rv,i�1q PER for 1¤ i  Nv. Accompanying this
routeRtv, the scheduleSdv of transport resourcevPRtr provides information on when each
of these resources inRtv are claimed. A scheduleSdv � ptv,1, tv,2, . . . , tv,Nvq is a sequence
of time points, wheretv,i specifies the time transport resourcev P Rtr claims resource
rv,i . This implies that transport resourcev usesrv,i during the time-windowrtv,i, tv,i�1q for
1¤ i   Nv and uses resourcerv,Nv during time-windowrtv,Nv,8q. Obviously, at any time,
the route and schedule have the same length, i.e.,�v P Rtr : |Rtv|� |Sdv|� Nv.

3.1.3.2 Infrastructure agents

The infrastructure agents are the road managers in a traffic network. They ensure the
safety of (a part of) the network and their goal is to optimizethe throughput of the network.
The infrastructure agents determine which reservations are, and which are not, allowed
for the transport agents. Different policies can be used to prioritize multiple transport
resources, which want to enter the same infrastructure resource at the same time (these
will later be described in Section 4.2.4).

The infrastructure agent maintains a set of reservations made by for the transport
resources. Each time a transport agents wants to reserve thetransportation plan it com-
puted or re-computed, this set of reservation is changed. Set Qprq � Rtr �W is the set
of transport resource and time-window pairs stored at infrastructure resourcer P Rinf. Ifxv, rt1, t2qy P Qprq, this means that vehiclev P Rtr has reserved access to infrastructure
resourcer P Rinf during the time-window starting at timet1 and ending at timet2.

To be able to specify later what exactly is a conflict between reservations of transport
resources, we also introduce the followingclaim function. Using the plan representation
described above, the claim function specifies in which infrastructure resource the transport
resourcev P Rtr has a reservation at timet and is defined as:

claimpv, tq � r � Drv,i P Rtv : r � rv,i^ t P rtv,i, tv,i�1q. (3.1)

Often transportation plans are not executed according to the transportation plans that
were initially computed. Because models are never perfect,the actions of the agents
might not have the exact effect as described in the model. In our case, we want to test the
robustness of the transport planning methods if such a situation occurs. That is why we
modeled incidents, which is the topic of the next section.
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3.1.4 Incidents

Incidents are events that disrupt regular plan execution and generally require replanning.
There are several types of incidents, which are best categorized by the entity that they
influence. These are(i) the agents,(ii) the transportation requests,(iii) the transport re-
sources,(iv) and the infrastructure resources. To the first category belong communication
failure problems. In AGV systems, often wireless communication is used between the
AGVs, which can very well be subject to communication failure. In the second category,
changes to transportation requests (e.g., a customer beinglate), but also the arrival of new
transportation requests can be modeled as incidents. The latter two categories are related
to (partial) resource failure, of both infrastructure resources as well as transport resources.
Since, in the experiments presented in this thesis, only thethird and fourth category of in-
cidents play a role, the focus of this section is also on thesetypes of incidents.

Communication failure If a communication failure incident occurs, the affected agent
is not able to communicate with any other agents during the specified time interval. That
means the agent might have to fall back to simpler planning methods for which it does not
need to communicate with others. A communication failure incidentpa,τq in the set of
incidentsI specifies that agenta P A is not able to communicate with other agents during
time-windowτ PW.

Resource failure (speed) Resource failure indicates that a certain resource – eitheran
infrastructure resource or a transport resource – does not function properly during a given
interval in time. A resource failure incidentptr , r, i,τq in the set of incidentsI is a tuple
consisting of the timetr at which the incident is announced to the agents, the resource
r P R the incident operates on, an impact value 0¤ i   1 indicating the severity of the
incident, and a time-windowτ PW during which the incident is effective. The duration of
τ is often denoted therepair time of the resource. If the incident operates on a transport
resource, i.e.,r PRtr, the vehicle’s maximum speed is multiplied withp1� iq during time-
window τ. If the incident operates on an infrastructure resource,r P Rinf, the maximum
allowed speed of the resource is temporary multiplied withp1� iq.
Resource failure (capacity) If the resource is a cargo unit (place where the freight is
loaded), the maximum loading capacity is multiplied withp1� iq (where again the impact
valuei is between 0 and 1); this only affects new loading operation,not currently loaded
transportation requests.

Now the components have been described it is possible to represent the transportation
plans for all of the transport resources. Not all possible transportation plans for a transport
resource are allowed and, therefore, the next section liststhe invariants and requirements
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on plans and sets of plans of the transport resources.

3.2 Invariants and requirements

This section describes the invariants to restrict to the problem setting and the validity re-
quirements, first for a single transportation plan and then for the plans of a set of transport
resources.

On the one hand, the invariants simplify the specification ofthe planning methods in
Chapter 4. On the other hand, they restrict the transportation problem considered (such
as the assumption stating that transshipment is not considered).

The requirements are needed to specify what is a feasible transportation plan. The
transportation resource must, of course, be able to executethe plan and, by executing the
plan, it must successfully complete the transportation requests. Furthermore, there are
additional requirements for a set of transportation plans to ensure that it is also possible
and safe to execute the set of plans together. The next section describes the invariants of
the framework.

3.2.1 Framework invariants

Transport resources must claim exactly one infrastructureresource at all times (no ghost
resources). Furthermore, each transport resource is givena start and destination location
with sufficient capacity. This assumption prevents agents to be in a location where they
bother other agents, but have no goal for themselves to leavethis location (and, hence,
this assumption simplifies the planning methods).

1. During the lifetime of each transport resource, exactly one infrastructure resource
must always be claimed.

2. Each transport resource is initially located in an infrastructure resourcer PRinf with
sufficient capacity, i.e.,kinfprq ¥ |A|. Such an infrastructure resourcer is referred to
as a parking space.

3. Each transport resource also ends in an infrastructure resourcer P Rinf with suffi-
cient capacity, i.e.,kinfprq ¥ |A|.

4. Transshipmentis not possible. A task assigned to an agent can still be reassigned
to another agent up to the moment the freight is loaded. When the freight has been
loaded this agent is responsible for a correct execution of the particular task.

5. The storing of the reservations belonging to the transportation plan of a transport
resource is assumed to be anatomicoperation (i.e., no problem will arise that an
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agent is searching a plan while reservations are being modified by another agent
resulting in invalid transportation plans).

The next section describes the requirements for a transportation plan to be feasible and
the requirements for a set of transportation plans to be safely executable together.

3.2.2 Framework requirements

In this section first the requirements of a transportation plan for a single transport re-
source are described. A transportation plan is calledfeasibleif it meets the requirements
described here. Subsequently, a set of transportation plans for multiple transport resources
is considered. Not all combinations of feasible transportation plans can safely be executed
together. The notion of a conflict is described and the requirements are listed for a set of
transportation plans to be free of conflicts.

3.2.2.1 Requirements of a transportation plan

A feasibletransportation plan can be executed by the transport resource and it will suc-
cessfully complete all transportation requests that have been assigned to the transport
resource.

Among others this means that all adjacent resources in the route of the transport re-
source must be neighbors in the transport network and all transportation requests assigned
to the transport resource must be planned for correct execution. Definition 3.1 specifies
when a plan is feasible.

Definition 3.1 A feasibleplan Pv � pv,Rtv,Sdv,Lv,Uvq for a transport resourcev P Rtr

is a plan that correctly takes into account all of the information, e.g., incidents, that is
known at the time the plan was computed. A feasible planPv consists of a routeRtv �prv,1, . . . , rv,Nvq, a scheduleSdv� ptv,1, . . . , tv,Nvq, loadLv : OvÑ T, and unloadUv : OvÑ T
information for transport resourcev P Rtr, for which the following must hold:

• The route and schedule have the same length,|Rtv|� |Sdv|� Nv,

• The first resource is claimed at the current timet, i.e.,claimpv, tq � r1^ t P rt1, t2q,
• The last resource is claimed as long as the transport resource exists, typically

tNv�1�8,

• All infrastructure resources adjacent in routeRtv must be neighbors in the transport
network:�i P r1,Nvq : prv,i , rv,i�1q P ER,

• All loading actions must be performed in the infrastructureresource that was spec-
ified by the customer:�oi P Ov,D j P r1,Nvq : Lvpoiq P rtv, j , tv, j�1q^ rv, j � si, and
likewise for unloading:�oi POv,D j P r1,Nvq : Uvpoiq P rtv, j , tv, j�1q^ rv, j � di , and
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Figure 3.2: Examples of the two types of conflicts. There are three resources with capacity
1, i.e.,Rinf � tA,B,ABu and�r P Rinf : kinfprq � 1. Both conflicts would disappear if the
capacities were 2.

• Unloading takes place after loading a request:�oi POv : Uvpoiq ¡ Lvpoiq.
Instead of considering only a single transportation plan, in the following section the trans-
portation plans of all transport resources together are taken into account.

3.2.2.2 Requirements of a set of plans

In order to consider when a set of transportation plans can safely be executed at the same
time, the notion of a conflict will be considered. If a conflictbetween two or more trans-
portation plans is present, this means the transportation plans cannot be executed together.
We assume that the individual transportation plans are already feasible as discussed in the
previous section and now consider the notion of conflicts.

Hatzack and Nebel (2001) suggest how to model conflicts between the plans for dif-
ferent transport resources. In their paper, each infrastructure resource has a minimum
traversal time per vehicle. Unlike our model, all their infrastructure resources have capac-
ity 1. Using our notation, assuming all infrastructure resources have capacity 1, transport
resourcev P Rtr has routeRtv� prv,1, rv,2, . . . , rv,Nvq, scheduleSdv� ptv,1, tv,2, . . . , tv,Nvq and
likewise for transport resourcew P Rtr, Hatzack and Nebel model conflicts as the follow-
ing constraints:�

rv,i � rw, j

	ñ �pv� wq_ rtv,i, tv,i�1qX rtw, j , tw, j�1q �∅

	
, (3.2)�

rv,i � rw, j�1^ rv,i�1� rw, j

	ñ �
tv,i�1� tw, j�1

	
. (3.3)

Equation 3.2 states that if two different transport resourcesvPRtr andwPRtr claim the
same resource, their time-windows may not overlap. Equation 3.3 prevents two transport
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resources to change position with each other instantly. Theequations correspond to the
type of conflicts illustrated in Figure 3.2.

In this thesis a similar notion of conflicts is used. However,the above definition is
adapted to take capacities of the infrastructure resourcesinto account. In Equations 3.4
and 3.5 conflicts for resources with non-unit capacity are defined, corresponding to the
above equations. Equations 3.2 and 3.3 of Hatzack and Nebel (2001) can be generalized
to cope with varying capacities using Equation 3.1. This is done by setting a constraint
on the maximum number of vehicles that can swap simultaneously.

First, two auxiliary functions are defined to simplify specifying the constraints. Func-
tion exchangespr, r 1, tq defines the number of transport resources that exchange infrastruc-
ture resourcer P Rinf for r 1 P Rinf exactly at timet P T. Functionstaypr, tq is the number
of vehicles that do not change their current infrastructureresourcer P Rinf for another
infrastructure resource at timet P T.�pr, r 1q P ER,�t P T : exchangespr, r 1, tq � lim

εÓ0

∣

∣tv P Rtr :pclaimpv, t� εq � r^claimpv, t� εq � r 1q_pclaimpv, t� εq � r^claimpv, t� εq � r 1qu∣∣,�r P Rinf
,�t P T : staypr, tq � lim

εÓ0
|tv P Rtr :

claimpv, t� εq � r^claimpv, t� εq � ru|.
The number of exchangesexchangespr, r 1, t 1q between infrastructure resourcesr P Rinf

andr 1 PRinf at timet is defined by counting the number of transport resourcesvPRtr that,
at timet, just left resourcer just and entered resourcer 1; or exactly the other way around.
This holds for any small numberε approaching zero.

We can now specify the two requirements, one defined at the resource level, the other
at the edge level, that ensure that the joint set of transportation plans is possible and safe
to be executed by the transportation agents.

On the resource level, at all times the capacity of the resource must be satisfied:�r P Rinf
,�t P T : |tv P Rtr : claimpv, tq � ru|¤ kinfprq. (3.4)

On the edge level, the following safety constraint is defined:�pr, r 1q P ER,�t P T : exchangespr, r 1, tq ¤
minpkinfprq�staypr, tq,kinfpr 1q�staypr 1, tqq. (3.5)

Equation 3.4 prevents the situation in Figure 3.2a, where more claims are done than
allowed by the capacitykinfprq of infrastructure resourcer P Rinf. Equation 3.5 avoids
a situation like in Figure 3.2b. This equation ensures thereis no spontaneous mutual
exchange between infrastructure resourcesr PRinf andr 1 PRinf by more than minpkinfprq�
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minp2�0,3�0q � 2.

Figure 3.3: These examples illustrate which simultaneous exchanges are allowed by
Equation 3.5. All arrows in these figures indicate the desireof the vehicle to move to
the resource the arrow points to. All these movements are instantaneous, assume they are
all at exactly the same time.
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r
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Figure 3.4: Border capacitiesbordercap: ERÑ N, a possible extension to the model,
kinfprq � kinfpr 1q � kinfpr2q � 2, bordercapppr, r 1qq � 1, bordercapppr, r2qq � 1.

staypr, tq,kinfpr 1q�staypr 1, tqq transport resources.
If one of the Equations 3.4 or 3.5 is violated, we say there is aconflict for a set of

transport resourcesRtr
c � Rtr in resourcer P Rinf (that has capacitykinfprq ¤ |Rtr

c |) during
time-windowτ (τ is the intersection of the overlapping claims of all transport resources
in Rtr

c for resourcer).

Remark 3.2 (Strenghtening the constraints)For some application domains, it could be
desirable to strengthen (or weaken) the edge level constraint (Constraint 3.5). Strength-
ening the constraints is often required in cases where the transport resources are large
relative to the infrastructure resources (e.g., airplane taxiing) and in cases where the in-
frastructure resources have many connections.

Equation 3.5 prevents more vehicles to swap resources simultaneously than the min-
imum of the capacities of these resources. If a resource has multiple outgoing arcs, see
Figure 3.4, this might be too general – depending on the application domain. In such
a case, the edgese P ER, whom in this model have no properties at all, can be given a
border capacitybordercappeq P N representing the area size of the border between the in-
frastructure resources. Functionbordercappeq then specifies the number of vehicles that
are allowed to swap simultaneously. The edge level constraint, replacing Equation 3.5,
would then be:�pr, r 1q P ER,�t P T : exchangespr, r 1, tq ¤ bordercapppr, r 1qq. (3.6)

Finally, we can state that Equations 3.4 and 3.5 form the requirements for a joint set of
transportation plans, and there is one more requirement to the plan of a transport resource,
which takes into account the plans of other transport resources:

• Given that reservations of other transport resources (bQ P B) and incidents (bI P B)
are or are not taken into account, not a single infrastructure resource is traversed
faster than possible:�i P r1,Nv�1s : tv,i�1¥ tv,i�δ pv, rv,i , tv,i,bQ,bIq.
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Figure 3.5: Example plans for five transport resources from two different perspectives.

The next section describes how the infrastructure agents and transport agents work to-
gether. The infrastructure agents compute reservations for infrastructure resource as asked
by the transport agents. Furthermore, they actively monitor and inform the transport
agents in case of abnormalities. If the transport agents create feasible plans that conform
to the reservations computed by the infrastructure agents,the joint set of all transport
resource plans is guaranteed to be possible and safe to execute.

3.3 Agents

Operational transport agents make agreements with infrastructure agents. For each infras-
tructure resource, a transport agent can claim the time-window for its transport resource
when he wants to use the resource as determined in the schedule of the transport resource.
This can, depending on the algorithms that are used, grant the agent certain rights, e.g.,
that no other transport resource is allowed to claim the infrastructure resource during this
time-window. Or, they can be used by other agents to avoid heavily loaded infrastructure
resources. In our model several functions are defined that specify the time required by
transport resources to traverse resources – with or withouttaking into account previously
committed plans – and the load of infrastructure resources over time.

3.3.1 Infrastructure agents

Access by transport resources to the infrastructure resources is controlled by one or more
infrastructure agents, depending on the size of the infrastructure. Each infrastructure re-
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source is controlled by one infrastructure agent. The infrastructure agent computes a
reservation for a transport agent, given the time the transport resource enters the resource.
Moreover, it is allowed to change these reservations at will. This is necessary, for ex-
ample, in case an incident slows a transport resource down insuch a way that another
transport resource must also be delayed. The agent is informed that its prior reservation
has to be delayed by the infrastructure agent. It is assumed that these infrastructure agents
can be trusted by all other agents.

The tasks of an infrastructure agent are(i) to ensure a conflict-free situation and(ii)
to maximize the performance of an infrastructure resource.It might be that infrastructure
agents try to maximize the throughput of an infrastructure resource or they communicate
with transport agents to determine which transport agent can go first. Intuitively, infras-
tructure agents can be compared to intelligent traffic lights. In Chapter 4 several methods
are described that can be used by infrastructure agents.

The following section describes how the traversal speed of atransport resource for an
infrastructure resource is determined.

3.3.1.1 Traversal speed

The speed at which transport resources traverse the infrastructure resources is determined
by (i) their maximum speed,(ii) the maximum speed allowed at the infrastructure re-
source they are traversing, and(iii) incidents that affect either the transport resource or
the infrastructure resource. Of course, their speed is zeroif transport resources are not
traversing infrastructure resources. For each transport resourcev P Rtr and infrastructure
resourcer P Rinf we define the static speedsspv, rq at which transport resourcev traverses
infrastructure resourcer and the situation-aware speedsdpv, r, tq that takes into account
incidents effective and known at timet. Note that it is possible that not all incidents at
timet are known already at the time this function is computed. Using Eipr, tq, which is the
effective impact of incidents at timet for resourcer (only taking into account incidents
that are known at the time of computation), the static and dynamic speed are computed as
follows:

sspv, rq � mintstrpvq,sinfprqu, (3.7)

Eipr, tq � maxti : ptr , r, i,τq P I^ t P τu, (3.8)

sdpv, r, tq � mintstrpvq �Eipv, tq,sinfprq �Eipr, tqu. (3.9)

The above speed functions do not include waiting time causedby other transport re-
sources that claim the same infrastructure resource or by other transport resources driving
in front of this transport resource in the case that overtaking is not allowed. This waiting
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time is taken into account in the plans of transport resources.

Knowing the traversal speed it is possible for the infrastructure agents to compute
a reservation for a transport resource and an infrastructure resource, given the time the
transport resource will enter the infrastructure resource.

3.3.1.2 Computing reservations

Infrastructure agents that take into account both reservations of other transport resources
as well as incidents search for the earliest time-window to claim an infrastructure resource
that results in a conflict-free situation. In other words, the desired time-windowrt1, t2q
in which transport resourcev P Rtr traverses infrastructure resourcer P Rinf at or later
than timet is the solution to the following optimization problem (notethat the last two
equations are equal to Equation 3.4 and 3.5):

minimize t1
subject to t1¥ t

t2� t1�sdpv, r, t1q�t P rt1, t2q : |tw P Rtr : claimpw, tq � ru| ¤ kinfprq�pr, r 1q P ER,�t 1 P tt1, t2u : exchangespr, r 1, t 1q ¤¤min
�
kinfprq�staypr, t 1q,kinfpr 1q�staypr 1, t 1q� (3.10)

If the infrastructure agent does not take into account incidents, we can replace
sdpv, r, t1q by sspv, rq. If reservations are not taken into account, the optimization prob-
lem becomes trivial:t1 � t and t2 � t � sdpv, r, tq. That greater values fort1 ¡ t do not
need to be considered is is proven by Proposition 3.3. Furthermore, this proposition sup-
ports the fact that we can minimizet1 and do not have to worry aboutt2 in the optimization
objective.

We can now define functionδ that computes the time required to traverse the infras-
tructure resource, given two Boolean parameters indicating whether or not to take into ac-
count reservations of other transport resources and/or incidents. Functionδ pv, r, t,bQ,bIq
represents the minimum time needed to traverse infrastructure resourcer P Rinf by trans-
port resourcev P Rtr starting not before timet P T while taking into account reservations
of other transport resources if and only ifbQ P B is true and taking into account incidents
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if and only if bI P B is true.

δ pv, r, t,bQ,bIq � t2� t in
minimize t1
subject to t1¥ t

t2� t1�" sdpv, r, t1q
sspv, rq if bI

if  bI�t P rt1, t2q : |tw P Rtr : claimpw, tq � ru| ¤ kinfprq if bQ�pr, r 1q P ER,�t 1 P tt1, t2u : exchangespr, r 1, t 1q ¤ if bQ¤min
�
kinfprq�staypr, t 1q,kinfpr 1q�staypr 1, t 1q�

(3.11)
Proposition 3.3 shows that, while computing the reservation rt1, t2q for an infrastruc-

ture r P Rinf
, it is sufficient to minimize the value oft1, because that always leads to the

minimum value fort2 as well. Departing later (increasingt1) always results in at least
the same completion timet2. Furthermore, the proposition generalizes this result over
(partial) routes of more than one infrastructure resource.

Proposition 3.3 Given any infrastructure I� pR,ER,kinf
,ktr

,dinf
,sinf

,strq, a set of inci-
dentsI, and a fixed route Rtv � prv,1, rv,2, . . . , rv,Nvq, let t, t 1 P T to be two different depar-
ture times for transport resource vP Rtr such that t1 ¡ t. Let ∆pRtv, tq denote the minimal
time needed to traverse Rtv starting at time t. Then, at any point in time4, it holds that
the completion time t1�∆pRtv, t 1q, when starting the traversal at time t1, is at least the
completion time when starting at time t:

t 1�∆pRtv, t
1q ¥ t�∆pRtv, tq. l

PROOF: First it is proven the proposition holds for a single infrastructure resource. Then,
it is shown how this result can be generalized over a completeroute.

For any infrastructure resourcer P Rinf, and �v P Rtr
,�bQ,bI P B, it holds that

t 1� δ pv, r, t 1,bQ,bIq ¥ t � δ pv, r, t,bQ,bIq. If the transport resource would leave at the
early point in timet, it could in the worst case be blocked by an incident with impact
one, meaning the transport resource would have speed zero during the incident. However,
leaving at the later point in timet 1 – while traversing the same route – the transport re-
source will then arrive in the same situation. If incidents with impact one would not have
been allowed, the inequality¥ can even be replaced by the strict inequivalence relation¡.

4Although the set of incidentsI is fixed, it is still the case that at different points in time different
incidents are known, because an incident is only known afterits release time. A plan that was feasible at
time t, is not necessarily still feasible at timet� ε for someε ¡ 0.
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Thus for a fixed route that has length one the proposition holds. Now notice that

t 1�∆pRtv, t
1q � t 1�δ pv, rv,1, t

1
,bQ,bIq�∆

�prv,2, . . . , rv,Nvq, t 1�δ pv, rv,1, t
1
,bQ,bIq�¥ t�δ pv, rv,1, t,bQ,bIq�∆

�prv,2, . . . , rv,Nvq, t 1�δ pv, rv,1, t
1
,bQ,bIq�.

That means it also holds for all fixed routes of length two then. By induction it can easily
be shown that it holds for all fixed routes of arbitrary length. �

This section described how the infrastructure agents compute reservations for transport
resources that are not in conflict with any existing reservations. The next section describes
the transport agents that can plan on a higher level, relyingon the infrastructure agents to
solve the lower level conflicts.

3.3.2 Transport agents

Transport agents are the planners for the transport resources. Their goal is to maximize
performance (to be defined later in this section) by executing transportation requests. The
setOv�O is the set of transportation requests inO that are assigned to transport resource
v P Rtr. Intuitively, they try to maximize the active performance indicator, for example,
maximize the reward of individual transportation requestswhile minimizing the (traver-
sal) costs. Each transport agent owns a transport resource,or possibly a set of transport
resources. The task of transport agents is to compute plans for the transport resources
they own.

At each pointt P T in time, each transport resourcev P Rtr claims exactly that infras-
tructure resourceclaimpv, tq P Rinf, where transport resourcev P Rtr resides in at timet.
If r1 and r2 are infrastructure resources andpr1, r2q P ER and transport resourcev P Rtr

holds a claim at infrastructure resourcer1, it can claim resourcer2 after having traversed
resourcer1, while releasing its claim on resourcer1.

The behavior of a transport agent is mainly defined by how and which tasks it wishes
to execute together with the planning method it uses to compute executable transportation
plans.

The goal for each self-interested transport agent is to maximize its performance, e.g.,
to maximize the sum of reward values for the transportation requests it executes, and/or
to minimize its costs for traversing infrastructure resources, waiting, etc. Although not
necessary, for simplicity it is assumed that each agent is responsible for a single transport
resource.

Equation 3.11 is used by the infrastructure agents to compute the reservations for the
transport agents. The importance of this equation is, that,assuming the transport agents
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only create feasible plans (see Definition 3.1) it can be proven they also only construct
plans that meet the requirements for a set of transportationplans to be free of conflicts.

Proposition 3.4 If the transport agents create feasible plans and the infrastructure agents
compute the reservation time-windows for all infrastructure resources with limited capac-
ities, then the joint set of all transportation plans for alltransportation resources is free
of conflicts.

PROOF: We must prove that, if a transport agents created a feasibleplan for its transport
resourcev P Rtr and an infrastructure agent determined the time-windows ofthe reserva-
tions, Equations 3.4 and 3.5 are met. Note that the transportation agent can choose the
reservations for theparking spaceresources (the infrastructure resources with unlimited
capacity) freely. Here no conflicts can occur and the vehiclecan either stay idle here or
load/unload freight.

Let routeRtv � prv,1, rv,2, . . . , rv,Nvq and scheduleSdv � ptv,1, tv,2, . . . , tv,Nvq be the fea-
sible transportation plan for transport resourcev P Rtr. We will prove the proposition for
an arbitrary indexi P p1,Nvq in the plan (indexes 0 andNv do not need to be considered,
because these are parking space resources). At indexi vehiclev resides inrv,i during the
time-windowrtv,i, tv,i�1q.

From Equation 3.11 it follows that�t P rtv,i , tv,i�1q : |w P Rtr : claimpw, tq � rv,i | ¤
kinfprv,iq. This means that Equation 3.4 is satisfied.

Equation 3.11 also states that the infrastructure takes into account that�t 1 P ttv,i, tv,i�1u : exchangesprv,i , rv,i�1,¤qminpkinfprv,iq � stayprv,i , t 1q,kinfprv,i�1q �
stayprv,i�1, t 1qq. And also that�t 1 P ttv,i�1, tv,iu : exchangesprv,i�1, rv,i ,¤qminpkinfprv,i�1q�
stayprv,i�1, t 1q,kinfprv,iq� stayprv,i , t 1qq. From these two observations it can be concluded
that Equation 3.5 is also satisfied. �

Proposition 3.4 does not mean that the planning of the transportation agents becomes triv-
ial. First, it is their responsibility that the plans they create are feasible (by Definition 3.1).
Second, it is also their responsibility to ask the infrastructure agents to create the reser-
vations they need to construct feasible and efficient plans.Suppose that, at some time
t, an infrastructure agents computes a reservationrt1, t2q for the transportation agent. It
is possible this reservation cannot be used by the transportation agent in its search for a
feasible plan that executes all transportation requests. In such a case, the transport agent
must ask for a new reservation with a different starting timet ¡ t1. How this is done will
be described in the planning methods in Chapter 4.

The topic of the next section is to describe the quality of such a plan. Usually, there
are many plans that achieve the same goals (i.e., delivery the freight), but those do not all
have the same performance.
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3.4 Performance criteria

Beamon (1998b) describes several important performance criteria for AGV systems such
as vehicle travel time, vehicle utilization, queue length,and material handling cost.
Le-Anh and de Koster (2004) states that generally, multi-criteria objective functions lead
to a better quality. Morton and Pentico (1993) suggest to take into account revenue, tardi-
ness, costs, and economic makespan as objectives. Fully developing an objective function
according to them is not worthwhile and, since it is application specific, for the scope of
this thesis only several general functions are specified to be able to work with. This gives
a short-list with the followingobjectives:

• The costs for executing the transportation plan,

• Travel time, waiting time, idle time,

• Resource utilization, for transport network or transport resource,

• Queue length,

• Earliness and tardiness of the transportation requests,

• The number of accepted and correctly executed transportation requests,

• Economic makespan, trying to minimize resource utilization, penalizing intermedi-
ate (not final) waiting time.

The plan of a transport resourcev P Rtr consists of a routeRtv, a scheduleSdv, and a load
and unload function that specify at what time each transportation requestoPOv is loaded,
Lvpoq, and at what time it is unloaded, i.e.,Uvpoq.

The performance function of such a plan usually is a trade-off between cost and re-
ward. In general, this cost-reward optimization is non-trivial due to the imposed pickup
and delivery time-windows of the requests.

The following section describes how the cost of a transportation plan can be specified.
The subsequent section describes other criteria, besides cost, which are often used in a
performance indicator.

3.4.1 Cost model

To determine the cost for the total system, one usually distinguishes between fixed costs
and variable costs. The fixed costs, for each transport resource, are independent of the
usage of the resource, but are there because a company must own, rent, or lease the
transport resource. The fixed costs of a transport resourcev P Rtr can be expressed as a
function ofCf pvq P T. Note that we measure the costs of a plan in terms of time.
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The variable costs depend on the amount of time the transportresource resides in any
of its states. A transport resource can beWaiting, Loading, Unloadingor Driving. In
order to specify the costs of these states in terms of the scheduleSdv of transport resource
v P Rtr, the loading costsLcv and unloading costsUcv are defined first:

Loading time costsLcv� plv,1, lv,2, . . . , lv,Nvq,where

lv,i � ¸
o jPOv

#
δl p f jq if Lvpo jq P rSdv,i ,Sdv,i�1q,
0 otherwise.

Analogously, the unloading time costsUcv� puv,1,uv,2, . . . ,uv,Nvq,where

uv,i � ¸
o jPOv

#
δup f jq if Uvpo jq P rSdv,i ,Sdv,i�1q,
0 otherwise.

Then the departure times from each resource areDtv� pt 1v,1, t 1v,2, . . . , t 1v,Nv
q, where

t 1v,i � tv,i�Lcv,i�Ucv,i .

The total loading time in transport resourcev’s plan isLoadpSdvq �°tPLcv
t and the

total unloading time isUnloadpSdvq �°tPUcv
t. The total drive costs areDrivepSdvq �°

i�1...Nv
sdpv, rv,i , t 1v,iq. The remaining time between the birthtb,v and deathtd,v of transport

resourcev P Rtr is the waiting timeWaitpSdvq � ptd,v� tb,vq�DrivepSdvq�LoadpSdvq�
UnloadpSdvq.

The variable costs of a transport resourcev P Rtr is a function
Cvpv,DrivepSdvq,DrivepSdvq,LoadpSdvq,UnloadpSdvqq of these different states.

The performance of an agent, however, is more than only the costs for executing its
plan. One obvious aspect is the rewards agents can achieve byexecuting their transporta-
tion requests successfully.

3.4.2 Performance indicators

The performance of a multi-agent system is measured in termsof the performance of the
individual transport resources. Several aspects are important in the transportation domain.
Among others, these are(i) the cost a transport resource has to make for executing the
tasks assigned to it,(ii) the reward the agent receives for successfully executing tasks, and
(iii) the CPU cost a transport agent needs to compute its plan. The latter, CPU cost, gives
important information about the scalability of a system. Or, in other words, if a problem
instance increases in size (for example, more transportation requests, more agents, more
incidents) can the multi-agent system still function within acceptable time?
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The specified load and unload time-windows associated with transportation request
o j � p f j ,sj ,τs

j ,d j ,τd
j ,π jq areτs

j andτd
j respectively. Let̆τs

j and τ̆d
j refer to the realized

time-windows of requesto j POv andP�
v to the optimal plan for transport resourcevPRtr.

The average tardiness per request, infrastructure costs, transport resource reward, and
finally the relative system welfare are defined as follows:

tardinesspτs
j ,τ

d
j , τ̆

s
j , τ̆

d
j q � max

�
0,ubpτ̆s

j q�ubpτs
j q�� max

�
0,ubpτ̆d

j q�ubpτd
j q�,

average request tardiness� ¸t j :o jPOu tardinesspτs
j ,τ

d
j , τ̆

s
j , τ̆

d
j q{|O|,

relative infrastructure costs� °
vPRtr CpPvq°
vPRtr CpP�

v q ,
relative transport resource reward� ¸t j :o jPOu π jpτ̆s

j , τ̆d
j q

π jpτs
j ,τd

j q ,
system welfare� °t j :o jPOu π jpτ̆s

j , τ̆d
j q�°vPRtr CpPvq°t j :o jPOu π jpτs

j ,τd
j q�°vPRtr CpP�

v q .
In the experiments in Chapter 5, mostly the CPU cost (in time)and the relative trans-

port resource reward will be used. Which performance indicator is most important de-
pends on the problem domain. Also, at the strategic level onemight be more interested in
the transport resource costs (whether or not to allocate an additional transport resource)
than for instance tardiness, while at the operational levelthis might be the other way
around.

3.5 Summary

In this chapter a detailed description of a model for operational multi-agent transport
planning is presented. The framework proposes a representation for a transport network,
transport resources and their transportation plans, transportation requests and incidents.

Following Hatzack and Nebel (2001), the framework makes useof a non-classical
graph representation. Instead of modeling a transport network as a classical graph with
edges and vertices, where both usually have different properties, we make use of a set of
infrastructure resources, having several properties, with connections that have no special
properties. This eases, for instance, the modeling of crossroads.

The key aspect of this framework is that it distinguishes between transport agents
and infrastructure agents. The infrastructure agents makereservations for infrastructure
resources, which aids the search for conflict-free plans forthe transport resources.
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Infrastructure agents guard the usage of infrastructure resources by only allowing
transport resources access to the infrastructure resources if they have made a reserva-
tion. The exact duration of this reservation is previously determined by an infrastructure
agent. This ensures, as proven in this chapter, that transport agents together create a set
of joined plans that is free of conflicts.

In the next chapter a variety of planning methods are presented that make use of
the framework presented here to construct transportation plans. Because, as proven in
Appendix D, finding the best possible transport planning is avery hard problem, the
focus is on searching approximation methods to big-sized transportation problems.
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Chapter4
Planning methods

Multi-agent route (transportation) planning refers to theproblem of finding a conflict-free
set of routes for a set of agents using a shared infrastructure. In the previous chapter
a framework for operational transportation planning has been presented and Section 3.2
proves that a set of agent routes is guaranteed to be free of conflicts if the transport agents
query the infrastructure agents for the start and end times at which they will claim the
individual infrastructure resources. This chapter moves on to the question how to build
complete transportation plans that that correctly executethe transportation requests and
meet the customer’s deadlines.

In this chapter several approaches for multi-agent route planning will be considered.
The first of these is the classical solution to transportation planning. In this approach the
transportation planning is split into a route-finding and a conflict resolution stage. This
approach is characterized by the use of basic shortest path algorithms and simple resource
usage rules that prioritize the agents on road crossings. Note that both stages might be
done during planning time, or the conflict resolution stage might be delayed until the
actual execution of the plans starts. The principal idea of the approach is to lower the
complexity by first only considering which route to take, then to schedule the entry and

75
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exit times of the infrastructure resources along the route.
The classical approach has several disadvantages. If conflicts are resolved during

plan execution deadlocks might occur and this affects the predictability of travel times.
But also if conflicts are resolved during planning time, performance might suffer from
fixating the routes before considering potential conflicts with other transport resources.

Other researchers adopt an integrated approach, where conflict resolution is inte-
grated with route planning (context-awarerouting). The best known result is that of
Kim and Tanchoco (1991), which has a high computational complexity. Furthermore,
one might doubt whether it is useful to invest this much time in finding plans which can
be destroyed by a few incidents (and cause a re-planning).

Context-aware routing intuitively seems a good approach inideal circumstances, be-
cause it computes optimal plans assuming that the other agents do not make any plan
changes and the absence of uncertainty in the environment. However, it stands to reason
that context-aware routing only performs well in normal circumstances, and performance
degrades in case of incidents. The reason is that the context-aware routing method – as
opposed to the classical approach – delays agents based on information about the plans of
other agents, but that information might no longer be valid in incident-rich environments.

Therefore, the final part of this chapter considers several approaches that are more
robust in case of incidents and with respect to modeling uncertainties. Because of this
uncertainty, it is practical that these methods operate both in the planning stage (before
execution starts) as well as in the execution stage.

The next section describes the first approach to transportation planning, which is
called the classical approach, because later on the other transportation planning methods
are compared to this approach.

4.1 Classical approach

A straightforward solution for operational transportation planning is to leave the planning
to the agents, but constrain the plan execution in a way similar to the everyday traffic
regulation approach: use a set of operational conflict-resolution rules such as traffic rules
(keep right), traffic lights and dynamic traffic guidance systems to ensure effective conflict
resolution in the operational stage.

Hence, one could consider as a solution to multi-agent transportation planning to split
the problem in two parts:

• planningstage: apply individual route-finding algorithms to find a best route for a
single agent in a given infrastructure, and

• conflict-resolutionconflict resolutionstage: conflict-resolution mechanisms that can
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be used to resolve conflicts that arise due to the execution ofroutes found by route-
finding algorithms.

The simplest way to determine the route for an agent, neglecting the presence of other
agents on a given infrastructure, is to have each agent plan ashortest path from its current
location to its destination. A basicshortest-path algorithm, such as Dijkstra (1959), can
be used by the agents. Then comes the second stage of the standard approach. The
operational conflict resolution is done by defining resourceusage rules that prioritize the
vehicles if they enter crossroads at the same time. These resource usage rules can be based
on dynamic aspects, such as who arrives first at a crossroad, or static aspects related to
the importance of the task. Examples of static resource usage rules are:

• highest-task-priority: the profits that can be earned for executing tasks is not con-
stant. For example, an ambulance, police or fire brigade in action could precede
regular traffic,

• highest-vehicle-priority: there could be several different types of transport re-
sources, each with their own priority level.

Examples of dynamic resource usage rules are:

• first-come-first-served: for example, in the US at at 4-way-stop intersection, the
vehicle that reaches the crossroad first gains the highest priority,

• longest-waiter-first: during plan execution, agents possibly have to wait at several
occasions. This rule is similar to the previous one, but sumsthe waiting times of
multiple crossroads,

• urgent-deadline-first: the agents are executing tasks withdelivery deadlines. This
rule is similar to the previous one, but considers the urgence with respect to time
instead of task importance.

The problem with this classical approach is that travel times are becoming almostunpre-
dictable: an agent must at least have some knowledge of what the other agents are doing
to know how this affects its own plan. Even more important is the possibility ofdead-
locksto occur (see Figure 4.1a) which means the agents will not even be able to execute
their plans. Finally, more knowledge about each others actions can improve the agent’s
decision making, which in turn improves the performance.

It is possible to move the conflict resolution mechanism intothe planning stage as
well. Such a generate-and-test approach first generates theroutes and then a test approach
is followed, which detects conflicts and finds a solutions to the problem. This makes the
resource usage rules described above more effective, it removes the possibility for dead-
locks to occur, and it makes the travel times more predictable. This approach, however,
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(a) A deadlock occurs if both vehicles start driving without
letting the other pass by first.
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(b) Vehiclev1 better takes the bottom de-
tour, if it has to give way to vehiclesv2 and
v3, but it cannot know this without at least
considering the plans of the other agents.

Figure 4.1: Two examples that show the necessity of agents tocommunicate their plans.

still starts with searching a route and then does not consider alternative routes anymore.
We believe it is better to integrate the route searching withthe conflict resolution. This
is the essence of thecontext-awareapproach we propose as an alternative to the classical
approach.

4.2 Context-aware routing

Context-aware routing(Fujii et al., 1989; Kim and Tanchoco, 1991) refers to an approach
where during the construction of an optimal route from source to destination also the
consequences of the plans of other agents using the same infrastructure have been taken
into account. This means that as a result of context-aware routing the set of routes of
the agents are conflict-free and individually optimal giventhe routes of the other agents.
Context-aware routing, however, requires that the resultsof route plans of agents can be
stored and (locally) retrieved. Agents must be able(i) to make reservations of parts of the
infrastructure and(ii) to be provided with detailed information about the availability of
parts of the infrastructure.

Context-aware routing – assuming that no incidents occur – therefore

1. ensures that the set of routes determined is conflict-free,

2. ensures the predictability of the individual travel times,

3. renders a separate conflict-resolution stage obsolete.

The next section describes context-aware routing for a single agent. This algorithm
solves the problem to find an optimal shortest path in time foran agent given a set of



Chapter 4. Planning methods 79

transportation plans (which are assumed not to change) of other agents. Subsequently,
Section 4.2.2 considers the context-aware routing for a setof agents.

4.2.1 Single-agent context-aware routing (SACA)

This section only considers planning for a single agent. It can be assumed that a subset
of the agents have already created plans and made reservations – these reservations are
assumed to be fixed and executed as planned. The rest of the agents do not have trans-
portation plans at the moment, and can use the algorithm, which will be presented in this
section, to find a transportation plan.

To make clear that agents have to consider the plans (reservations) of other agents let
us consider an example. The example shows why it does not suffice to have all agents
individually use a basic shortest path algorithm such as Dijkstra (1959).

Example 4.1 In Figure 4.1a a deadlock occurs if both vehicles plan to traverse their route
as soon as possible. If vehiclev1 enters resourcer2 before vehiclev2, and vehiclev2 enters
resourcer6 before vehiclev1, then a deadlock cannot be avoided unless at least one of the
agents modifies its route. The only solution is to have one of both waiting until the other
passes by.

In Figure 4.1b vehiclev1 has to make a choice between the upper routeRtv1,1 �pr5, r1, r2, r3, r4q and the lower routeRtv1,2 � pr5, r6, r7, r8, r9, r4q. Note that there are
no connectionspr2, r6q R ER, pr10, r11q R ER, etc1. Obviously it chooses the upper route
Rtv1,1, which it can finish in fewer steps. But let us consider the plans of all agents in
more detail. The plan for vehiclev2 is Pv2,1 � pr13, r0,1q, r10, r1,2q, r2, r2,3q, r10, r3,4qq.
Vehicle v3 wants to go to resourcer11 via r3 and has the planPv3 �pr12, r0,1q, r15, r1,2q, r14, r2,3q, r11, r3,4q, r3, r4,5q, r11, r5,6qq. The first part of the plan
for taking the upper routeRtv1,1 is Pv1,1 � pr5, r0,1q, r1, r1,2q, . . .q. But there is the first
conflict. Vehiclesv1 and v2 cannot both traverse resourcer2 during the time-windowr2,3q. Let us assume thatv2 precedesv1, then vehiclev1 waits in resourcer1 and enters
resourcer2 at time 3, i.e.,Pv1,1 � pr5, r0,1q, r1, r1,3q, r2, r3,4q, . . .q. The second conflict
occurs in resourcer3 and, again, we assume that vehiclev3 has higher priority than vehi-
cle v1, which results in the planPv1,1 � pr5, r0,1q, r1, r1,3q, r2, r3,5q, r3, r5,6q, r4, r6,7qq.
This plan turns out inferior than the plan for taking the bottom route Pv1,2 �pr5, r0,1q, r6, r1,2q, r7, r2,3q, r8, r3,4q, r9, r4,5q, r4, r5,6qq. l
The above example showed that if an agent takes the plans of the other into account it is
able to avoid conflicts that might occur otherwise. With the classical approach, in the first
example the occurrence of a deadlock is likely, while in the second example the upper

1In the examples in this chapter it is assumed that all infrastructure resources – unless explicitly men-
tioned otherwise – have a capacity of 1 and can be traversed in1 time unit.
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route would incorrectly seem better than the bottom detour.This is the advantage of
the context-aware routing algorithm over approaches that leave the conflict-solving to the
execution stage (such as the classical approach).

4.2.1.1 Single-agent context-aware source-destination routing

In this section the core part of the context-aware routing algorithm is presented: how to
find a conflict-free shortest path in time from a source to a destination location for a single
agent. Conflict-free means that the plans of other agents aretaken into account. The set
of reservations of the other agents, which planned prior to the currently planning agent, is
assumed to be fixed and to be executed as planned.

Before presenting the context-aware routing algorithm, a section is devoted to extend
the framework presented in Chapter 3 with the notion of free time-windows and free
time-window reachability. These are required for the context-aware routing algorithm.

Free time-window graph Instead of searching a shortest path in a graph, where the
nodes represent locations (i.e., infrastructure resources), the context-aware routing algo-
rithm searches through a graph offree time-windows. A free time-window is an interval
during which the infrastructure resource has sufficient capacity available for an additional
transport resource to occupy the infrastructure resources. The idea is to search through
free time-intervals instead of reserved or forbidden time-intervals.

The framework presented in Chapter 3 includes, for each infrastructure resourcer P
Rinf, a setQprq � A�W of agent time-window pairs representing the reservations of all
agents. For the context-aware routing algorithm, a set of free time-windows specifying
when the resource can accept additional presence of a transport resource is defined in
terms of the set of reservationsQ. Agents can safely create reservations in time intervals
that are within the bounds of these free time-windows.

Definition 4.2 (Free time-window) Given resourcer i and the agent-reservationsQpr iq �
A�W on resourcer i , a free time-window onr i is an intervalfi,v� rσi,v,φi,vq such that:

1. �t P fi,v : |tpa j ,τkq PQpr iq : t P τku|   kinfpiq,
2. φi,v�σi,v¥ dinfpr iq.

The first condition states that for an interval to be a free time-window, there should not
only be sufficient capacity at any moment during that interval, and the second condition
of Definition 4.2 ensures that it is also possible to traversethe resource before the end
of the time-window. Note that the collection of free time-windowsFi on resourcer i is a
list p fi,1, fi,2, . . . , fi,mq of disjoint intervals such that for allj P r1, . . . ,m�1s, fi, j precedes
fi, j�1.



Chapter 4. Planning methods 81

The context-aware routing algorithm is based on the idea of going from one free time-
window on one resource to another free time-window on another resource. The reacha-
bility relationρ defines when two free time-windows are reachable:

Definition 4.3 (Free time-window reachability) Given a resourcer i , a free time-
window fi,v on this resource, and a timet, the free time-windowf j ,w on resourcer j is
reachable fromr i at timet, denotedf j ,w P ρpr i, tq, if:

1. pr i, r jq P E,

2. t P p fi,vX f j ,wq,
3. t�σi,v¥ dinfpr iq,
4. φ j ,w� t ¥ dinfpr jq.

The first condition in Definition 4.3 ensures that the resources r i and r j are connected.
The second condition states that timet is contained both in the free time-windowfi,v
of resourcer i as well as in the free time-windowf j ,w of resourcer j , and these free time-
windows overlap. The third condition ensures the transportresource does not exit resource
r i before it had time to traverser i and the fourth condition requires there will be enough
time to traverse resourcer j if the transport resource entersr j at timet.

Basic shortest-path algorithms, such as Dijkstra (1959), do not consider the plans of
other agents while searching for a shortest path in time fromthe source to destination
location. Context-aware routing algorithms do take this into account. In Dijkstra’s short-
est path algorithm, when a node is selected for expansion, itis sure that the current path
to this node is the shortest, and the algorithm does not need to consider any other paths
leading to this node. In context-aware routing, on the otherhand, it does not suffice to
consider infrastructure resources only once. The first timea resourcer is considered, one
has indeed found the fastest route from the source locationrs to resourcer (say arriving
at timet), but in an optimal plan from locationrs to destinationrd it might be necessary
to enter resourcer at some timet 1 later (t 1 ¡ t) due to reservations of other agents.

Example 4.4 Figure 4.2 shows why it is not sufficient only to consider the earliest pos-
sible visit of a resource. From the first (and only) free time-window on start resourcers,
both free time-windows on resourcer1 (which is on a direct path to the destination re-
sourcerd) can be reached. However, from the first free time-window onr1, f1,1 � r0,2q,
no free time-window onrd can be reached, because on the destination resource there is
a reservation until time 5. Hence, a transport resource mustgo from rs to r1 at time 4
(assuming travel times of 1 for all resources, by time 4 resourcers can be traversed). The
transport resource can leaver1 at time 5, enteringrd at time 5, at the start of the free
time-window on the destination resource. l
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r4,8q
rdr1rsr0,8q r0,2q r5,8qr0,5qr2,4q

Figure 4.2: The first arrival at resourcer1, at time 1, will not lead to the shortest path to
destination resourcerd. Instead, the path that visitsr1 during its second free time-window,
starting at time 4, must also be considered.

Now the notion of free time-windows and free time-window reachability has been intro-
duced, an algorithm can be described that takes reservations of other agents into account
by considering these free time-windows.

Context-aware source-destination algorithm For a clear presentation our context-
aware routing algorithm will be presented in steps. This section considers how an agent
searches a shortest path in time, from a source to a destination location, taking into ac-
count the reservations of a set of other agents.

Because agents usually have multiple transportation requests assigned to them, in Sec-
tion 4.2.1.2 the algorithm is modified to search a shortest-path in time along a sequence
of pickup and delivery locations (this sequence is referredto as thevisiting sequence).
Finally, Section 4.2.2 presents the multi-agent context-aware routing algorithm that finds
a route for all agents instead of just for one.

In this section the context-aware source-destination algorithm is described, which
searches a shortest path in time for a single agent, given a source (usually the location
where the agent resides) and destination location. The context-awareness comes from the
fact the algorithm takes information about the plans of the other agents into account. This
is realized by storing reservations by other agents to occupy a resource in the infrastruc-
ture. Using this information the context-aware routing algorithm can search a shortest
path in time avoiding any conflicts with other agents.

The context-aware routing algorithm maintains a queueQ of candidate solutions,
which is sorted by the costs made in the partial solution so far. The cheapest partial
solution, the element at the front of the queue, is retrievedfrom the queue. This candi-
date solution is then expanded by appending reachable free time-windows to the partial
route, provided that no constraints are violated. If such anexpansion means that the
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Algorithm 4.1 Context-aware shortest-path routing.
1: function CONTEXTAWAREPATH(rs, rd, ts)
2: Pre: start resourcers, destination resourcerd, start timets.
3: Post: entry time intord for the shortest path fromrs to rd.
4: if Dvr fs,v P Fs | ts P fs,vs then
5: Q� tprs, tsqu
6: end if
7: while Q�∅ do
8: pr i , tiq � argminpr,tqPQ t�dinfprqq
9: Q�Qztpr i , tiqu

10: if r i � rd then
11: return FOLLOWBACKPOINTERSpr i, tiq
12: end if
13: for all f j ,v P ρpr i , tiq do
14: tentry�maxpti�dinfpr iq,σ j ,vq
15: if CONSTRAINTSOK pr i, r j , tentryq then
16: Q�QYpr j , tentryq
17: Fj � Fjzt f j ,vu
18: backpointerpr j , tentryq � pr i , tiq
19: end if
20: end for
21: end while
22: return NOPOSSIBLEPATH

23: end function

new resource can be reached earlier than without the currentexpansion, the resource and
reached free time-window at that resource are added to queueQ and a backpointer is
stored to the resource and free time-window pair from which it is reached. Finally, these
backpointers are traversed to reconstruct the shortest possible path from the source to the
destination infrastructure resource.

Algorithm 4.1 presents the pseudocode of the single-agent source-destination context-
aware routing algorithm, which will now be considered in more detail. The algorithm
expands a partial plan by looking at which free time-windowscan be reached, rather
than by expanding the plan by reachable resources. In Line 5,the open listQ of free
time-windows is initialized to the start resource and the start time. In Line 8, the open
list elementpr i , tiq with the lowest costti �dinfpiq is retrieved. Hence, the open list ele-
ments are sorted in order of increasing (minimum)exit times. Only thepr i, tiq pairs are
stored on the open listQ, but the complete route and schedule can be reconstructed us-
ing backpointers that point to the previous resource-time pair. These backpointers, set in
Line 18, point to the resource-time pair from which the newlyadded resource-time pair is
reached. TheFOLLOWBACKPOINTERS function then simply reconstructs the route back-
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wards from destination to source resource by following the backpointers, to return the
shortest path in Line 11.

To expand the current free time-window, in Line 13, all (resource, free time-window)
pairs that are inρpr i , tiq are considered. The entry time into a reachable free time-window
f j ,v� rσ j ,v,φ j ,vq is either the entry time into the previous resourcer i plus the time it takes
to traverser i, or, in casef j ,v starts afterti�dinfpr iq, the start timeσ j ,v of f j ,v.

Line 15 checks additional constraints with regard to the current expansion candidate.
FunctionCONSTRAINTSOK returns true if the constraints with respect to head-on and
catching-up conflicts are met (see Section 3.2.2.2). Line 16adds the new element to the
open listQ, and, Line 17 removes the free time-windowf j ,v from the set of free time-
windowsFj of resourcer j . This is an important step, as it guarantees that we do not
consider any free time-window for expansion more than once.

The next section presents a proof of thecorrectnessof the context-aware routing al-
gorithm.

Correctness of the single request variant An algorithm is consideredcorrect if, and
only if, assuming that the starting point is a set of transportation plans that are free of con-
flicts, any new transportation plan computed by the algorithm is possible to be executed
and not in conflict with an already existing plan of some agent.

First, note that the plans constructed by the context-awarerouting algorithm can al-
ways be executed, assuming no incidents occur, because the next resource to be visited is
always selected using the reachability relationρ .

Second, assuming the plans of the other agents are conflict-free, the resulting set of
transportation plans are also free of conflicts. This follows directly from the fact that
the resulting plan only creates new reservations within time-intervals that were free time-
windows.

Optimality of the single request variant The context-aware routing algorithm finds
the optimal route from a source to a destination resource, starting at a given time, and
assuming that the environment is fully known (i.e., no incidents, no more changes to the
plans of other agents and no uncertainty in the environment).

Proposition 4.5 Algorithm 4.1 returns an optimal solution, given the plans and reserva-
tions of the other agents are fixed.

PROOF: First we prove, by induction, that during thenth execution of the while-loop in
Line 7, each pairpr i , tiq PQ on the open listQ represents the earliest time to reach the free
time-window fi,v, having started fromprs, tsq.

Initially, the open list contains onlyprs, tsq, and the induction hypothesis holds for
n� 0. Suppose now that aftern¥ 0 iterations of the while-loop, the pairpr i , tiq is retrieved
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from the open list in Line 8. Letf j ,v P ρpr i , tiq be the free time-window to be expanded,
and the earliest exit timetexit� ti�dinfpr iq. Now there are two cases to consider:

1. texit ¤ σ j ,v. In Line 14, the entry time intof j ,v is determined to beσ j ,v. Clearly,
the free time-windowf j ,v cannot be entered earlier than its start timeσ j ,v, so the
induction hypothesis also holds for the pairpr j ,σ j ,vq that is added to the queue.

2. texit ¡ σ j ,v. The entry time intof j ,v will be texit. To see that no earlier entry time
into f j ,v is possible, note that�k� i, prk, tkq P Q : texit ¤ tk�dinfprkq (this follows
directly from Line 8). Hence, for any pairprk, tkq such thatf j ,v P ρprk, tk�dinfprkqq,
the entry time intof j ,vwould be at leasttexit.
A second point to note is that there will be no iterationm¡ n such that a pairprm, tmq
can be inserted intoQ, such thattm� dinfprmq   texit. If a new elementprm, tmq is
inserted into the open listQ as a result of expandingprk, tkq P Q, for somek � i,
thentm�dinfprmq ¡ tm¥ tk�dinfprkq ¥ texit.
Hence, there is no earlier entry time possible into windowf j ,v thantexit and the pairpr j , texitq satisfies the induction hypothesis.

It is now clear that in each step of the algorithm, a pairpr i, tiq is expanded to all free time-
windows reachable from the free time-window determined bypr i , tiq. This means that the
free time-windowf j ,v can safely be removed in Line 17, because it is impossible to find a
path that reaches this free time-window earlier.

The proposition now follows since also for the destination resourcerd it holds that
if the pair prd, t jq is taken from the open list, the backpointers to this pair represent an
optimal path fromrs to rd starting at timets. Hence, Algorithm 4.1 guarantees to find the
first possible entry time into the first reachable time-window on destination resourcerd.�

Besides the fact that the algorithm is correct, it is also faster than any competing existing
algorithm . The best known result is that of Kim and Tanchoco (1991). In the next section,
an analysis is provided of the time complexity of our context-aware routing algorithm.

Time complexity of the single request variant Proposition 4.6 gives the run-time com-
plexity of the single-agent context-aware source-destination algorithm. The proposition is
followed by a proof. Subsequently, the run-time complexityis also expressed in terms of
the transport network size and number of agents, to make it easier to compare this method
to other approaches.

Proposition 4.6 Algorithm 4.1 has a run-time complexity ofOp|F| logp|F|q� |ρ|q.
PROOF: A free time-window f P F can be put onto the open listQ at most once, and
in every iteration of the while-loop in Line 7, one free time-window is removed from
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Q. Hence, this while-loop is executed at most|F| times, and none of the Lines 8-11
contribute more thanOplogp|F|qq.

An important observation is that Lines 14–18 (inside the for-loop) also execute at
most|F| times. In these lines, a free time-window will be added toQ, and that can occur
at most|F| times. Inserting an element intoQ requiresOplogp|F|qq time. Removal of
the examined free time-windowf j ,v can also be done withinOplogp|Fj |qq �Oplogp|F|qq
time.

Furthermore, at Line 13 every element ofρ might have to be inspected during the
run of the algorithm – but no more than once. Hence, Line 13 contributesOp|ρ|q to the
complexity of the algorithm.

Hence, Algorithm 4.1 has a run-time complexity ofOp|F| logp|F|q� |ρ|q. �

Usually, the run-time complexity of algorithms is specifiedin terms of the number
of infrastructure resources and connection of the transport network. The same can be
done here, after making the assumption that transport resources have at most a constant
numberc of reservations per infrastructure resource (ifc� 1 this effectively disallows
cyclic routes).

Corollary 4.7 If transport resources cannot have more than a constant number of reser-
vations per resource (e.g., only acyclic plans are allowed)then Algorithm 4.1 has a run-
time complexity ofOp|Rtr||Rinf| logp|Rtr||Rinf|q� |ER||Rtr|q.
PROOF: If transport resources can have at most a constant numberc of reservations in
a resource, each infrastructure resource can have at mostc|Rtr| reservations. This means|F| is bounded byc|Rtr||Rinf|. At the same time,|ρ| ¤ c|ER||Rtr|, because for each arc in
the transport network at mostc|Rtr| free time-windows can be reached in the resource the
arc connects to.

Hence, we have that|F| logp|F|q� |ρ| ¤ c|Rtr||Rinf| logpc|Rtr||Rinf|q�c|ER||Rtr|. �

Because agents usually have multiple transportation requests assigned to them at the same
time, the next section describes how the context-aware algorithm can deal with a (visiting)
sequence of pickup and delivery locations.

4.2.1.2 Single-agent context-aware visiting sequence routing

The source-destination routing described in Section 4.2.1.1 computes a shortest path in
time for an agent to traverse from its initial location to a destination location. But in
transportation planning, agents have to look further. Theycan be assigned multiple orders,
and hence have to create a plan to visit multiple location after each other. The sequence of
loading and unloading locations that the agent has to travelto is referred to as thevisiting
sequenceof the agent.
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Algorithm 4.2 Function VISITINGSEQUENCE computes a shortest path in time along
loading and unloading resources in the plan of a transport resource, while taking into
account capacity constraints of the vehicle as well as loading and unloading times.

1: function VISITINGSEQUENCE(t, r1, r2, . . . , rm)
2: Post: The shortest path in time along the visiting sequence
3: pRtv,Sdvq � pr1, tq
4: for i P 1..mdo
5: t � Sdv,n� (un)loading times in resourceRtv,n
6: pRt1v,Sd1vq � CONTEXTAWAREPATH pr i , r i�1, tq
7: if pRt1v,Sd1vq � NOPOSSIBLEPATH then
8: pRtv,Sdvq � pRtv,SdvqñpRt1v,Sd1vq
9: else

10: return NOPOSSIBLEPATH

11: end if
12: end for
13: return pRtv,Sdvq
14: end function

The VISITINGSEQUENCE algorithm (Algorithm 4.2) computes shortest paths along
the ordered pickup and delivery resources, i.e., the visiting sequence of resources, of the
agent. Re-ordering of the resources in this visiting sequence, as well as exchanging them
with other agents, is considered a decision at the tactical level.

Correctness of the multiple request variant The single-agent context-aware visiting
sequence algorithm is in fact a series of single-agent context-aware source-destination
route plannings. Hence, we already know that these plans arecorrect and only have to
consider the visiting sequence resources themselves, the locations where the plans are
concatenated.

This is, however, also very easy due to one of the invariants in Section 3.2.1. All vis-
iting sequence resources are either the start or end location of the transportation resource,
or it must be a pick-up or delivery resource. In all of these cases, the visiting sequence
resource has sufficient capacity to make a conflict with otheragents impossible.

Optimality of the multiple request variant In Chapter 3 the assumption was men-
tioned that loading and unloading resources have sufficientcapacity to hold all trans-
portation vehicles. This simplifies the application of the source-destination variant of
context-aware routing to visiting sequence routing. Namely, the optimal route along the
visiting sequence is a simple concatenation of the optimal routes between each pair of
adjacent location in the visiting sequence. This can easilybe seen, because the agent can
wait indefinitely in any of the resources in the visiting sequence. It can, therefore, never
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be an advantage to arrive later in any of the resources in the visiting sequence. Without the
sufficient-capacity assumption one would have to consider multi-stage routing (Ter Mors,
2007), which can still efficiently be solved (in polynomial time).

In the next section one can see what happens to the time complexity of the single-agent
context-aware routing algorithm if a set of transportationrequests per agent is considered.

Time complexity of the multiple request variant In Section 4.2.1.1 it was shown that
the single-agent context-aware source-destination algorithm (Algorithm 4.1) has a run-
time complexity ofOp|F| logp|F|q� |ρ|q.

The visiting sequence routing algorithm applies this algorithm at most twice for each
transportation requesto P Ov assigned to transport resourcev P Rtr (once for the pickup
location, once for delivery). This means Algorithm 4.2 has arun-time complexity of
Op|F| logp|F|q|Ov|� |ρ||Ov|q.

With the assumption that all transportation plans are acyclic Algorithm 4.1 has a run-
time complexity ofOp|Rtr||Rinf||Ov| logp|Rtr||Rinf|q� |ER||Rtr||Ov|q.

The single-agent context-aware visiting sequence algorithm can plan multiple trans-
portation requests for a single agent, taking into account the reservations of other agents.
In the next section, transportation planning for multiple agents is considered.

4.2.2 Multi-agent context-aware routing (MACA )

Until now this chapter considered the context-aware routing approach for a single agent,
given fixed plans of the other agents. In the transportation problem, however, there usually
is a whole fleet of agents for which transportation plans haveto be constructed. The
context-aware routing method can then be applied iteratively by all agents in the fleet, in
an arbitrary order.

Clearly, in such an iterative approach, the quality of the plans of the agents depends
on theorder in which the agents create their transportation plans. Hence, the final set of
plans of the agents might not be a global optimal set of plans (the plan an agent creates
is still the best it can do, given the plans of the agents who preceded in the planning
process remain fixed). Furthermore, there might not even exist an ordering of agents that
results in a global optimal set of plans, due to the fact that the agents create a complete
transportation plan one by one.

For the multi-agent version of context-aware routing an event-based approach is used.
Each time a new transportation request is assigned to an agent, this agent searches a mod-
ified plan which includes the newly arrived transportation request. Hence, the arbitrary
order in which the agents plan in this case is controlled by the order in which the trans-
portation requests are assigned to the agents.

This new method (see Algorithm 4.3), used each time a new transportation request is
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Algorithm 4.3 PROCESSNEWREQUESTmethod using insertion heuristic.

1: function PROCESSNEWREQUEST( f P F,sP Rinf
,τs PW,d P Rinf

,τd PW,π P R)
2: Pre: New request is assigned to transport resourcev P Rtr of agenta P A.
3: Post: PlanPv� pRtv,Sdvq includes the execution of the new request.
4: for all pi, jq : 2¤ i   j ¤ n�1 do � pickup detour at indexi, delivery at j.
5: pRt1v,Sd1vq � VISITINGSEQUENCEpSdv,1,Rtv,1, . . . ,Rtv,i�1,s,Rtv,i , . . . ,

. . . ,Rtv, j�1,d,Rtv, j , . . . ,Rtv,nq
6: if µpRt1v,Sd1vq ¡ µpRtv,Sdvq then
7: pRtv,Sdvq � pRt1v,Sd1vq
8: end if
9: end for

10: end function

assigned to an agent, is calledPROCESSNEWREQUEST. This method makes use of the
VISITINGSEQUENCEalgorithm described in the previous section (Algorithm 4.2), which
computes shortest paths along the sequence of pickup and delivery resources, i.e., the
visiting sequence of resources, of the agent.

The agents execute thePROCESSNEWREQUEST method in the order in which the
transportation requests arrived and without interleavingthe planning with other agents.
Due to both of these factors the resulting plans are sub-optimal. First, due to the arbitrary
ordering: suppose that agenta1 plans earlier than agenta2 in this ordering of agents, and
that agentsa1 anda2 share some infrastructure resources in their routes. If an optimal
plan requires that agenta2 precedes agenta1 in at least one of these share infrastructure
resources, this plan might not be found (in the case that agent a1 reaches the infrastructure
resource earlier than agenta2). Second, due to the absence of interleaved planning: if
agenta1 first has to precede agenta2, but later has to take priority in any optimal plan,
then such a plan also cannot be found, because the agents create a complete plan for all
of their transportation requests at once when it is their turn.

Algorithm 4.3 describes how a new transportation request isinserted into the possibly
already existing plan of an agent. Note that, for simplicity, several algorithmic optimiza-
tions have been ignored here. For example, if a detour indexj is not allowed due to
capacity violation, one does not need to check indexes greater thanj; instead, indexi can
be increased. Furthermore, routes can be cached. During thecomputation many similar
routes are searched, often with more or less the same starting time. Hence, some time can
be gained.

4.2.2.1 Correctness of the multi-agent variant

In the multi-agent context-aware algorithm an agent modifies its current route by inserting
a pick-up detour for an additional transportation request and a delivery detour as well. It
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then compares its plan with the old version and if its performance improves, the agent
accepts the additional transportation request and modifiesits plan accordingly.

Because this is assumed to be an atomic operation, and we already know the single-
agent visiting sequence routing algorithm is correct, no conflicts can arise from this pro-
cess. Therefore, assuming a conflict-free starting point, the multi-agent context-aware
routing also results in a set of transportation plans that isalso free of conflicts.

4.2.2.2 Optimality of the multi-agent variant

Section 4.2.1.2 showed that the single-agent context-aware visiting sequence algorithm
correctly computes a shortest path in time for a single agentgiven reservations of the
other agents.

The multi-agent context-aware routing applies this algorithm in a sequence. At each
iteration, an agent uses Algorithm 4.2 of which it is known this produces a correct plan
given the reservations of other agents. Hence, the number ofreservations grows while
more agents constructed their transportation plans and each new transportation plan does
not conflict with any of the already existing plans. Therefore it can be concluded that
the set of transportation plans that exists after the final agent constructed its transporta-
tion plan is a correct set of plans that can be executed without any problems (assuming
execution goes according to the plans).

Furthermore, assuming no incidents and no hard pickup or delivery deadlines, a trans-
portation plan that executes all transportation requests correctly always exists and is al-
ways found by the multi-agent context-aware algorithm. It can easily be seen that a plan
exists for all of the agents, by considering the following: let each agent wait in its ini-
tial location (which by definition has sufficient capacity).Then select one by one all of
the agents and let the selected agent execute all of its assigned transportation requests.
The next agent selected only starts after the previous agentfinished execution of all of its
requests. Hence, in this plan no conflicts are possible, because no two agents reside in
a location with limited capacity, a necessary condition fora conflict. This proves that a
multi-agent conflict-free transportation plan always exists. If a better plan does not exists,
Algorithm 4.2 will always find this plan.

In the next section the time complexity of the multi-agent context-aware routing algo-
rithm is described.

4.2.2.3 Time complexity of the multi-agent variant

In Section 4.2.1.2 it was shown that the single-agent context-aware visiting sequence al-
gorithm has a run-time complexity ofOp|F| logp|F|q|Ov|� |ρ||Ov|q and with the assump-
tion that all plans are acyclic a run-time complexity ofOp|Rtr||Rinf||Ov| logp|Rtr||Rinf|q�|ER||Rtr||Ov|q.
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In the multi-agent context-aware routing algorithm all agents compute their trans-
portation plans in a sequence. The total number of context-aware shortest-path computa-
tions is simply twice the number of transportation requests, i.e., once for each pickup and
once for each delivery location. Hence, the time-complexity of the multi-agent context-
aware routing algorithm isOp|F| logp|F|q|O| � |ρ||O|q and with the assumption that all
plans are acyclic a run-time complexity ofOp|Rtr||Rinf||O| logp|Rtr||Rinf|q� |ER||Rtr||O|q.

In this context-aware routing section we have described thesingle-agent context-
aware routing algorithm and how to construct a multi-agent variant by applyingSACA

iteratively. We are after all interested in searching transportation plans for a set of vehi-
cles. The next section presents some interesting properties of theMACA algorithm and
comparesMACA to other approaches.

4.2.3 Properties of the multi-agent context-aware routing

This section describes properties of theMACA approach. First, the quality of the solu-
tion is considered. Subsequently, a comparison is made between the classical approach
presented in Section 4.1 and the multi-agent context-awarerouting approach. Finally, the
approach is compared to two related approaches; that of Kim and Tanchoco (1991) and
of Hatzack and Nebel (2001).

4.2.3.1 Solution quality

A Nash equilibrium (Nash, 1950) is a situation in which no single agent is capable of
improving its performance by making changes to its plan,withoutother agents changing
their plans as well. The importance of reaching a Nash equilibrium is that the situation is
stable; no single agent can make any progress modifying its plan, without forcing other
agents to make other decisions.

The multi-agent context-aware routing approach always results in a Nash equilibrium
– a local optimum. Each of the agents computes an optimal plan, given the reserva-
tions of other agents at that time. Then it immediately creates reservations for this plan.
Hence, none of the agents can improve its plan, without forcing other agents to make
other choices.

In general, however, the multi-agent context-aware routing approach results in a local
optimum, not a globally optimal solution. Finding a global optimum, however, is a much
more difficult problem, because, for each possible conflict,all possible orderings of agents
must then be considered.
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Figure 4.3: classical versus context-aware approach. Eachagent can choose to travel to
its destination via the center resourcerc following the solid arrows, or take the alternative
route given by the dashed arrows.

4.2.3.2 ComparingMACA to CLASSICAL

In this section, the classical approach is compared to the context-aware method by giving
examples. The first example shows how a central resource can become a bottleneck in
the classical approach, while the context-aware approach easily finds alternative, non-
congested routes. In this example the context-aware methodsignificantly outperforms the
classical approach. The second example illustrates that the freedom of the context-aware
planner can sometimes lead to plans that make it harder for subsequent agents to find
efficient plans. This shows that the classical approach can be superior too.

Based on these examples a general conclusion cannot be drawn. Therefore, in the next
chapter experimental evidence is used to compare both approaches.

Example 4.8 Suppose that there aremagents in the transport network illustrated by Fig-
ure 4.3. Each agentai has the choice between two alternative routes:(i) from its ini-
tial location via the center resourcerc to its destination resource,pr i

s, rc, r i
dq, or (ii) take

the outer detour, which is one step longer, following the dashed arrows,pr i
s, r

i
a, r

i
b, r

i
dq.

Using the classical approach, all of them agents will choose the former route, travers-
ing resourcerc. The first agent will then reach its destination at time 3, thesecond
agent has to wait 1 time unit, the third agent one more, etc. This results in total costs
3� 4� . . .� pm� 2q � pm� 2qpm� 3q{2� 3 and a makespan ofm� 2. If Dijkstra’s
shortest path algorithm with Fibonacci heap was used, the time complexity would be
Op|Rtr| � |Rinf| logp|Rinf|q� |ER|q, whereRtr is the set of transport resources,Rinf the set of
infrastructure resources andER the set of connections between infrastructure resources.

If the context-aware method is used, the first agent would compute the same plan
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Figure 4.4: Another example comparingCLASSICAL to MACA . The vehicles in resource
rs,1 are namedv1,1, v1,2 andv1,3, and the vehicles in resourcers,2 are namedv2,1, v2,2 and
v2,3.

and go via resourcerc. The second agent would select either way, with equal prob-
ability. Let us say that it would also go via resourcerc. Then, all other agents will
avoid resourcerc and take the alternative route. The total costs now are 3� 4� 4�
. . .�4� 3�4pm�1q and the makespan is only 4 (or 3 ifm� 1). Time complexity is
Op|Rtr||Rinf||O| logp|Rtr||Rinf|q� |ER||Rtr||O|q.

Both of the given performance indicators, summed total costs and makespan, have
improved by a factorm and the context-aware method is better for any number of agents
m¡ 2 in this example (and equal form¤ 2). l
The context-aware method has some amount of overhead in computation time by solving
conflicts in advance (although it takes no more than polynomial time). We expect the
context-aware method to be somewhat slower than the classical approach, even though, if
the classical approach is used, conflicts will still have to be solved during the execution
phase.

Due to the arbitrary ordering in which agents plan, it is alsopossible, however, to
construct a negative example in which the classical approach outperforms the multi-agent
context-aware method.

Example 4.9 This time consider Figure 4.4. Its infrastructure has two long corridors of
resources. Three vehicles in resourcers,1 want to go to resourcerd,1, while the three ve-
hicles in resourcers,2 want to go to resourcerd,2. All locations, except for the pick-up
locationsrs,1 andrr,2, and the delivery locationsrd,1 andrd,1, have capacity 1. Further-
more, all resources have the same constant traversal time, say 1 time unit.

Assuming the vehicles are identical (except for their initial location), there are
�6

3

� �
20 possible sequences in which the vehicles can plan. Half ofthese are listed in Table 4.5.
The first column displays the order in which the vehicles planned. Notice that the miss-
ing ten rows can be found by swappingv1,i with v2,i for i P t1,2,3u in the first column.
These are the same due to the symmetry. The second column shows the performance of
the vehicles, which is here computed as the sum of the travel times of the six vehicles.
The third column displays the makespan, which is the worst performance (the maximum
individual vehicle performance).
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Order Performance Makespan

v1,1 v1,2 v1,3 v2,1 v2,2 v2,3 9n�17 2n�4

v1,1 v1,2 v2,1 v1,3 v2,2 v2,3
6pn�3q (50%),
9n�17 (50%)

n�4, 2n�4

v1,1 v1,2 v2,1 v2,2 v1,3 v2,3
6pn�3q (50%), 9n�17
(25%), 11n�15 (25%)

n�4, 2n�4,
3n�2

v1,1 v1,2 v2,1 v2,2 v2,3 v1,3
6pn�3q (50%),
11n�15 (50%)

n�4, 3n�2

v1,1 v2,1 v1,2 v1,3 v2,2 v2,3 6pn�3q (100%) n�4
v1,1 v2,1 v1,2 v2,2 v1,3 v2,3 6pn�3q (100%) n�4
v1,1 v2,1 v1,2 v2,2 v2,3 v1,3 6pn�3q (100%) n�4
v1,1 v2,1 v2,2 v1,2 v1,3 v2,3 6pn�3q (100%) n�4
v1,1 v2,1 v2,2 v1,2 v2,3 v1,3 6pn�3q (100%) n�4
v1,1 v2,1 v2,2 v2,3 v1,2 v1,3 6pn�3q (100%) n�4

Minimum 6pn�3q n�4
Expected 69

10n� 88
5

53
40n� 77

20
Maximum 11n�15 3n�2

Table 4.5: Possible performance outcomes for Example 4.9.

v1,1 rs,1 ru,1 . . . ru,n rd,1 n+2
v2,1 rs,2 r l ,1 . . . r l ,n rd,2 n+2
v1,2 rs,1 ru,1 . . . ru,n rd,1 n+3
v2,2 rs,2 r l ,1 . . . r l ,n rd,2 n+3
v1,3 rs,1 ru,1 . . . ru,n rd,1 n+4
v2,3 rs,2 r l ,1 . . . r l ,n rd,2 n+4

6(n+3)

Table 4.6: An optimal plan for Example 4.9. This plan represents that all vehicles starting
in resourcers,1 take the upper route and all vehicles starting in resourcers,2 take the
bottom route.

The MACA algorithm often finds the optimal solution, which is the planshown in
Table 4.6. It can go wrong if the planning sequence starts with two vehicles and the
second one chooses the alternative route. A sub-optimal plan will always be reached if
the three vehicles in resourcers,1 plan before the vehicles in resourcers,2, or vice versa.

Table 4.7 shows the final plan if first all vehicles in resourcers,1 reserve their plans,
and then the vehicles in resourcers,2. The optimal plan cannot be constructed in this
case. Although the first vehicle will always choose the upperroute, because this is the
fastest, the the second vehicle might also (now the two alternatives are equidistant), the
third vehicle will then surely choose the bottom route. Therefore, the optimal route will
never be constructed in this case. This corresponds to the first row of Table 4.5.
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v1,1 rs,1 ru,1 . . . ru,n rd,1 n�2
v1,2 rs,1 ru,1 . . . ru,n rd,1 n�3
v1,3 rs,1 r l ,n . . . r l ,1 rs,2 rd,1 n�3
v2,1 rs,2 r l ,1 . . . r l ,n rd,2 2n�2
v2,2 rs,2 r l ,1 . . . r l ,n rd,2 2n�3
v2,3 rs,2 r l ,1 . . . r l ,n rd,2 2n�4

9n�17

Table 4.7: A sub-optimal plan for Example 4.9. If vehiclesv1,1 andv1,2 both use the upper
route, then vehiclev1,3 always chooses the bottom route, because it then reaches resource
rd,1 faster. Hence, the optimal plan is never reached if the threevehicles in resourcers,1
reserve their plans first (and vice versa).

v1,1 rs,1 ru,1 . . . ru,n rd,1 n�2
v1,2 rs,1 r l ,n . . . r l ,1 rs,2 rd,1 n�3
v2,1 rs,2 r l ,1 . . . r l ,n rd,2 2n�2
v1,3 rs,1 ru,1 . . . ru,n rd,1 n�3
v2,2 rs,2 r l ,1 . . . r l ,n rd,2 2n�3
v2,3 rs,2 r l ,1 . . . r l ,n rd,2 2n�4

9n�17

Table 4.8: A sub-optimal plan for Example 4.9, which occurs if vehiclesv1,1 andv1,2 do
not choose the same route.

If first two vehicles in resourcers,1 plan, then one vehicle from resourcers,2, imme-
diately followed by the remaining vehicle of resourcers,1, then there are two possibilities
that are even likely. Either vehiclesv1,1 andv1,2 both choose the upper route and the result
is the optimal plan as illustrated in Table 4.6, or vehiclev1,2 selects the alternative route
and the result is as given by Table 4.8 which has a performanceof 9n�17..

The third row of Table 4.5 shows three possibilities. The planning order of the vehicles
here ispv1,1,v1,2,v2,1,v2,2,v1,3,v2,3q. If the first two vehicles choose the upper route, the
optimal plan is reached. Because vehiclev1,1 always chooses the upper route, this happens
in 50% of all cases. For the other 50% of the cases, the upper and bottom part of Table 4.9
are both even likely. The difference between those two is whether vehiclev2,2 will choose
the upper or bottom route, which have exactly the same distance. Which choicev2,2

makes, however, has a great influence on the performance of vehiclev1,3.
The final situation that can result in a sub-optimal plan for the vehicles is summarized

on the fourth row of Table 4.5. Again, if vehiclesv1,1 andv1,2 would both choose the
upper route, then the optimal plan would have been found. Theother 50% results in the
plan given by Table 4.10.

Table 4.5 lists all possible performance outcomes of this example. The best perfor-
mance of 6pn�3q is found in 75% of all possible orderings in which the vehicles can plan.
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v1,1 rs,1 ru,1 . . . ru,n rd,1 n�2
v1,2 rs,1 r l ,n . . . r l ,1 rs,2 rd,1 n�3
v2,1 rs,2 r l ,1 . . . r l ,n rd,2 2n�2
v2,2 rs,2 r l ,1 . . . r l ,n rd,2 2n�3
v1,3 rs,1 ru,1 . . . ru,n rd,1 n�3
v2,3 rs,2 r l ,1 . . . r l ,n rd,2 2n�4

9n�17

v1,1 rs,1 ru,1 . . . ru,n rd,1 n�2
v1,2 rs,1 r l ,n . . . r l ,1 rs,2 rd,1 n�3
v2,1 rs,2 r l ,1 . . . r l ,n rd,2 2n�2
v2,2 rs,2 ru,n . . . ru,1 rs,1 rd,2 2n�3
v1,3 rs,1 ru,1 . . . ru,n rd,1 3n�2
v2,3 rs,2 r l ,1 . . . r l ,n rd,2 2n�3

11n�15

Table 4.9: Assuming that vehiclesv1,1 andv1,2 make a different choice, there are two
equidistant choices for vehiclev2,2. Two sub-optimal plans for Example 4.9.

v1,1 rs,1 ru,1 . . . ru,n rd,1 n�2
v1,2 rs,1 r l ,n . . . r l ,1 rs,2 rd,1 n�3
v2,1 rs,2 r l ,1 . . . r l ,n rd,2 2n�2
v2,2 rs,2 r l ,1 . . . r l ,n rd,2 2n�3
v2,3 rs,2 ru,n . . . ru,1 rs,1 rd,2 2n�3
v1,3 rs,1 ru,1 . . . ru,n rd,1 3n�2

11n�15

Table 4.10: The final sub-optimal plan for Example 4.9. Note that the plans of the vehicles
v2,2 andv2,3 might be swapped, which results in the same performance.

In 7.5% of the possible orderings the worst plan with performance of 11n�15 is found. In
that case the performance is almost twice as bad as the classical approach, which will al-
ways find the optimal solution to the problem of this example.Furthermore, the expected
value of the performance is 69n{10�88{5, which is about a factor 7{6 worse than the
classical approach. With respect to the worst agent, which always has performancen�4
in the classical approach, we can see thatMACA in the worst case generates a plan that is
about a factor 3 worse. It can be concluded from this example that, in some situations, the
classical approach outperforms the multi-agent context-aware approach. l
This section has shown that there are situations in which thecontext-aware routing sig-
nificantly outperforms the classical approach. However, italso showed that the opposite
can be true. This means it cannot be said which method is the better one at the moment.
Extensive experiments are required that test and compare context-aware routing to the
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classical approach. Empirical evidence gathered by the experiments will be presented in
the next chapter.

In the next section context-aware routing is compared to related approaches. The most
important differences are described with two approaches that were already described in
Chapter 2, which are Hatzack and Nebel (2001) and Kim and Tanchoco (1991).

Comparison with related approaches In this section our multi-agent context-
aware routing method is compared to two related reservation-based approaches, which
also attempt to solve the routing problem for a fleet of vehicles.

The first related approach is Kim and Tanchoco (1991), see Section 2.2.4.1. Fujii et al.
(1989) inspired us with the notion of free time-windows and Kim and Tanchoco (1991)
present an algorithm, accompanied by a comprehensive analysis, for free time-window
routing.

The second related approach is that of Hatzack and Nebel (2001), see Section 2.2.4.2.
They present a fast algorithm to solve what they call the traffic control problem. Their
algorithm is used to route a fleet of airplanes taxiing on the ground. Although the algo-
rithm might in practice have turned out to be fast, we detected a flaw in the algorithm,
which results in the fact that the computation time of their algorithm is not polynomially
bounded.

Comparing MACA to Kim & Tanchoco In Section 2.2.4.1 the free time-window
graph routing algorithm of Kim and Tanchoco (1991) was presented. The run-time com-
plexity of their single-agent algorithm isOp|Rtr|4|Rinf|2q, while our single-agent run-time
complexity isOp|Rtr||Rinf| logp|Rtr||Rinf|q� |ER||Rtr|2q.

The reason for this difference is that their conflict detection procedure is inefficient.
Kim and Tanchoco (1991) did not make use of the fact that it is enough to consider only
the direct successor and predecessor to check for catching-up conflicts (instead, they iter-
ated through all present transport resources).

Furthermore, they used a different framework in which they both had to check for
conflicts in the locations, as well as on lanes. In our framework, presented in Chapter 3,
lanes are also modeled as resources with the same propertiesas locations.

Comparing MACA to Hatzack & Nebel In this section a comparison is made be-
tween multi-agent context-aware routing and the approach by Hatzack and Nebel (2001)
(see Section 2.2.4.1). The approach of Hatzack and Nebel (2001) consisted of two phases.
In the first phase each agent computes a context-unaware shortest path from its current to
its destination location. In the second phase, one by one theagents create a schedule that
does not conflict with schedules other agents created previously. At the end, all agents
have a plan and the joint plan is guaranteed to be free of conflicts.
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n Algorithm 4.1 [s] H&N [s] recursive calls

1 0 0 10
2 0 0 26
4 0 0 110
8 0 1.0 1,682
16 0 2.6 426,026
20 0 41.5 6,815,798
24 0 696.3 109,051,970

10,000 2.3 - -
20,000 12.1 - -

Figure 4.11: Difficult instances for Algorithm 2.2 of Hatzack and Nebel. The figure on the
left illustrates how the instances are created, the table onthe right gives the time required
to find a plan for different problem sizesn, and the number of recursive calls used by the
algorithm of Hatzack and Nebel.

Hatzack and Nebel (2001) do not take free time-windows into account in their algo-
rithm, obviously not in the first phase, but also not in the second phase. The importance
of free time-windows is the fact that algorithms can benefit greatly from the fact that only
the earliest possible time a free time-window can be visitedhas to be considered by an
algorithm. Any computations that visit the same free time-window at a later time are
superfluous, because one could have used the earlier visit and just wait, resulting in the
same plan costs.

The importance of considering which free time-windows are already visited can be
made clear by looking at the difference in performance (withrespect to CPU cost in
time) between Algorithm 2.2 of Hatzack and Nebel and Algorithm 4.1 on a special set of
problem instances. This example exploits the fact that the worst-case time complexity of
Algorithm 2.2 of Hatzack and Nebel is not polynomially bounded.

Their algorithm makes use of backtracking, and since they donot make use of the
idea that a free time-window needs to be expanded at most once, it is possible to con-
struct examples in which the algorithm keeps backtracking through the same paths of
time windows.

Figure 4.11 depicts an example where this worst-case behavior is realized. The fig-
ure illustrates the reservations on the sequence of resources (horizontally from source
resourcers via r1, r2, r3 . . . to destination resourcerd); vertically, the progress of time is
shown. Each resource is assumed to have a traversal time of 1.To create such an instance
where their algorithm needs 2n�1 updates, no more than the following 5n reservations



Chapter 4. Planning methods 99

are needed in a routers, r1, r2, . . . , r3n, rd of 3n�2 resources:

• resourcesr3i�2 are reserved duringr5i�3,5i�2q for 1¤ i ¤ n,

• resourcesr3i are reserved duringr5i�3,5iq for 1¤ i ¤ n,

• resourcesr i are reserved duringr5n,5n�1q for 1¤ i ¤ 3n.

The table shown in Figure 4.11 clearly shows that if such a structure of reservations oc-
curs Algorithm 2.2 of Hatzack and Nebel will not be able to solve the instance within
acceptable time, while Algorithm 4.1 has no problem with these instances at all.

Another difference to other approaches, such as the classical approach, is that our
framework is flexibly due to the separation between infrastructure and transport agents.
The next section describes several conflict-resolution rules that can be used by the infras-
tructure agents to prioritize the agents if a conflict occurs.

4.2.4 Refined conflict-resolution rules

Our framework presented in Chapter 3 separates between transport agents and infrastruc-
ture agents. The infrastructure agents compute reservations for the transport agents while
ensuring a global situation that is free of conflicts. To do so, the infrastructure agents must
prioritize agents with conflicting plans. The infrastructure agent uses conflict-resolution
rules to determine which agents precedes the others, and theother agents have to wait
until it is their turn to access the congested infrastructure resource.

We distinguish betweensimpleandplan-basedconflict-resolution rules. The differ-
ence is that in case ofsimplerules the priority values are not directly dependent on the
plans of agents, while theplan-basedrules are. Furthermore, one can also distinguish
betweenstaticanddynamicrules (see Table 4.12), where dynamic rules use information
that changes during plan execution, while static rules do not. All plan-based heuristics are
assumed to be dynamic (because the plan of an agent changes over time).

The following are examples of simple rules:

• Randomly assign an entity precedence.

• First-In-First-Out (FIFO): an entity that arrived first takes precedence.

• Longest queue takes precedence: an entity residing in the longest waiting queue
takes precedence.

• Longest queue with increment: the same as above, though herestarvation is taken
into account. It could happen that an agent waits alone for a crossroad where other
agents arrive continuously taking precedence. This trafficrule virtually increments
the queue length with 1 of each queue that is not chosen as the longest queue.
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Plan-based N/A Longest plan
Urgent deadline

Decreasing reward
Decreasing reward sum

Simple Random Longest queue (inc)
First-In-First-Out

Static Dynamic

Table 4.12: Distribution of the resource usage rules over simple versus plan-based rules
and static versus dynamic rules.

The following rules are plan-based, they take the plans of the agents into account. Within
the scope of this thesis, it is assumed that all agents are honest and benevolent.

• An agent with the longest plan takes precedence.

• An agent with the most urgent deadline takes precedence.

• Each agent can compute the decrease in reward resulting fromhaving to wait. An
agent with this maximum decrease takes precedence.

• The previous decrease in reward due to waiting can also be summed for the queue.
The queue having the maximum decrease takes precedence.

In the next chapter the performance of these conflict-resolution rules are compared to
each other by presenting the results of experiments in whichthe conflict-resolution rule
used by the infrastructure agents is varied. The next section describes several ways to
refine theMACA algorithm to deal with the arbitrary ordering in which the agents plan,
and to make it more robust to incidents.

4.3 Dealing with uncertainty

Typically, the assumptions made at planning time do not always hold at execution time, ei-
ther due to calibration errors or disturbances. For instance, at unpredictable times, agents
can be slower or faster in executing their actions. Uncertainty refers to both these model-
ing errors and incidents, such as described in Section 3.1.4.

In principle, incidents do not offer any problem to the classical approach described
in Section 4.1, since it is assumed that operational conflictresolution methods should be
sufficient to handle conflicts due to incidents as well.

We know that the multi-agent context-aware routing algorithm performs well under
normal circumstances. An important question, however, forevery route-planning system
is, how robust it is, i.e., how it behaves in case incidents are happening. It might be
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Algorithm 4.4 PROCESSINCIDENT method.
1: function PROCESSINCIDENT(tr P T, r P R,0¤ i ¤ 1,τ PW)
2: Pre: An incident occurred that possibly influences the plan of transport resource

v P Rtr of agenta P A.
3: Post: Agenta updates the planPv for vehiclev P Rtr, if needed.
4: if r P Rtv_ r � v then
5: Pv� VISITINGSEQUENCEptr ,COMPUTEV ISITINGSEQUENCEpRtvqq
6: end if
7: end function

the case that in incident-rich conditions, any work done on solving conflicts between the
agents a priori is rendered useless by the occurrence of unexpected failures, and, hence,
the classical approach actually leads to the same agent performance.

Of course, one could add operational conflict resolution systems to context-aware
routing systems just to complement them and to remove any conflicts due to incidents.
But then it easily might turn out that such systems are not better than the classical route
planning approach. Therefore, we propose to improve the context-aware routing method
itself to deal with such conflicts, integrating execution-time conflict resolution with re-
planning.

This section describes several approaches that increase the robustness of the system in
environments where incidents do occur. First of all, the multi-agent context-aware routing
described in Section 4.2.2 is adapted. Besides thePROCESSNEWREQUEST method, one
can add thePROCESSINCIDENT method, which is used by the agents each time an incident
occurs. Algorithm 4.4 presents the function that is called if an incident occurs. The
affected resourcer P R can either be a transport resource, or an infrastructure resource.
If it is determined that the incident might affect the plan ofthe agent, the agent will
recompute its plan.

Furthermore, in this section two types of refinements are described. With respect
to the execution stage, simple and plan-based conflict resolution rules are considered.
It might be the case that some rules work better in incident-rich situations, while other
perform better under normal circumstances. These rules will be tested and compared in
experiments in Chapter 5.

But there are also two revisions of the multi-agent context-aware routing algorithm.
The first is to revise priorities. The plans of the agents wereconstructed with the assump-
tion that no incident would occur. If an incident does occur,it makes sense to reconsider
the priorities of the agents that are no longer to execute their current plan due to the inci-
dent(s).

The second revision to the multi-agent context-aware routing algorithm reconsiders,
besides priorities due to incidents, also the routes chosenby the agents. With the addi-
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Figure 4.13: Example that shows the
improvement of theMACA -RP method.
Suppose that vehiclev1 plans at a later
time than the other vehicles, and its target
resource isr1. It turns out that has to wait
in all resources, and its plan will beP1�pr5, r0,2q, r4, r2,4q, r3, r4,6q, r2, r6,7q, r1,r7,8qq. If any vehicle, preferablyv2,
would give way to vehiclev1, that would
be of great help. This is exactly what the
MACA -RP method can arrange.
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tional information about the incident that occurred, an agent might prefer to take a detour.
The MACA -RR method considers alternative routes while replanning the priorities. An
important property of this method is that the spread of agents over the infrastructure after
an incident occurs is improved with respect to the other methods.

In the next chapter, experiments are presented that will test and compare the rules
listed in this section. Empirical evidence will show which rules perform best under normal
circumstances, and which perform best in incident-rich conditions.

The next section describes theMACA -RP method, which reconsiders priorities each
time new information, such as incidents, becomes available.

4.3.1 Revising priorities (MACA -RP)

In the previous approaches, if agents accepted new transportation requests and changed
their reservations accordingly, these reservations were permanent. Other agents planned
around these reservations. It was already noted that with this approach the welfare of
the system depends on the order in which the agents create thereservations for their
transportation plans. The performance can be improved by reconsidering the potential
conflicts.

Due to the arbitrary order in which the agents created their initial transportation plans,
unlucky choices might have been made. Theessenceof the MACA -RP method is to at-
tempt to improve the performance of the agents by re-evaluating the resource usage rules
now that more (or even less) transportation requests are assigned to the agents.

Regularly, the agents can request to revise priorities. This can be started, for instance,
when an agent has accepted a new transportation request, a transportation request has
been modified, or when an agent is bothered by an incident on its path. Algorithm 4.5
can be used to revise the priorities. Typically, the group ofagents that revise priorities is
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Algorithm 4.5 MACA -RP.
1: function MACA -RP(v P Rtr 1

,as P A,b P N)
2: Pre: Vehiclev, part of the set of rescheduling vehiclesRtr 1 � Rtr, reschedules in

blocks of sizeb
3: Post: Vehiclev has an up-to-date schedule
4: ADDTOGROUP(as,v)
5: Sdv� null
6: while |Sdv|   |Rtv| do
7: Compute provisional scheduleSd1v for index i to the end
8: Compute selection valuevv� hpPvq
9: winner� HASHIGHESTPRIORITYpas,vvq

10: if winner then
11: i � RESERVEBLOCKpv,Rtv,Sdv,Sd1v, i, i�bq
12: end if
13: end while
14: LEAVEGROUP(as,v)
15: end function

formed by the agent that requested the rescheduling together with all agents that share at
least one infrastructure resource with the requesting agent. This set of agents can quickly
be determined by looking at the reservations of agents for the infrastructure resources in
the plan of the requesting agent.

To coordinate the group of rescheduling agents, the algorithm makes use of a schedul-
ing agentsa P A. This can just be one of the agents within the group, or a special set of
agents for the purpose of rescheduling that can be trusted byall the agents. There can be
more than one of these scheduling agents and each schedulingagent could take care, for
example, for a certain geographical area.

If the request to revise priorities is granted by a scheduleragentsa, all of the partic-
ipating agents throw away their schedule, but maintain their route. Iteratively, an agent
is selected to recompute a part of its schedule. This selection is done using the agent
selection heuristic. A voting round is needed to determine the winner. This agent now
recomputes a part of its schedule, as determined by the resource block size parameter.
Then, Algorithm 4.5 moves on to the next iteration, where thenext agent is being selected
to recompute part of its schedule. The algorithm terminateswhen each agent in the group
has a new and complete schedule.

Line 4 adds transport resourcev P Rtr to the rescheduling group administered by the
scheduling agentas P A. Subsequently, vehiclev throws away its scheduleSdv and enters
a loop, which only terminates when its agent has re-computeda complete schedule. In
Line 7 an interim scheduleSd1v is computed, which would be the optimal schedule if there
would be no interference with other agents. Of course, this interim schedule has to take
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Figure 4.14: This example
is similar to Figure 4.1a.
Context-aware routing could
solve the deadlock by hav-
ing one vehicle wait for the
other. MACA -RP could im-
prove by determining which
vehicle should wait. The
MACA -RR method can further
improve by letting the vehicle
that was selected to wait by
the maca-rp method take a de-
tour.
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into account loading and unloading actions as specified in the planPv of vehiclev. In
Line 8 the agent selection heuristicvv � hpPvq computes the priority value for vehicle
v. The agents call theHASHIGHESTPRIORITY function, which only returns true for the
agent with maximum valuevv � maxwPRtr vw. In Line 11, theRESERVEBLOCK method
creates reservations for the vehicle with the highest priority, which it already computed
in the provisional scheduleSd1v. It creates reservations for the nextb resources in its plan,
but also for some more resources, because even temporary plans should always end in
a resource with sufficient capacity. If this would not be the case, it cannot be ensured
that the agent can find a feasible plan for the rest of its provisional schedule without
changing prior reservations. Finally, theLEAVEGROUP function removes the agent from
the rescheduling group.

The next section goes one step further. Besides reconsidering priorities of the agent,
the MACA -RR method allows agents to traverse an alternative route as newinformation
about incidents arrives.

4.3.2 Revising routes (MACA -RR)

In the previous methods the routes of an agent were only modified in case a new trans-
portation request was assigned to the agent, or when an incident rendered the route of the
agent infeasible.

A natural improvement to revising priorities, is to revise routes as well. The advan-
tage of theMACA -RR method overMACA -RP is that it is expected to have a higher perfor-
mance. Disadvantage is that, due to consideration of alternative routes, the computation
costs (in CPU time) are also higher. The next chapter presents a comparison between
these methods based on empirical data gathered with experiments.

Algorithm 4.5 can be extended to include consideration of alternative routes during
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Algorithm 4.6 MACA -RR.
1: function MACA -RR(v P Rtr 1

,as P A,b P N)
2: Pre: Vehiclev, part of the set of rerouting vehiclesv P Rtr 1, reschedules in blocks

of sizeb
3: Post: Vehiclev has an up-to-date schedule
4: ADDTOGROUP(as,v)
5: vs� visiting sequence of resources in which load and/or unload actions take place
6: pRtv,Sdvq � null
7: while vs�∅ do
8: Compute provisional planpRt1v,Sd1vq for visiting the resources invs

9: Compute selection valuevv� hpPvq
10: winner� HASHIGHESTPRIORITYpas,vvq
11: if winner then
12: i � RESERVEBLOCKpv,Rtv,Sdv,Rt1v,Sd1v, i, i�bq
13: end if
14: end while
15: LEAVEGROUP(as,v)
16: end function

the replanning. In Algorithm 4.6, instead of computing a provisional scheduleSd1v, a
provisional routeRt1v as well as a scheduleSd1v is computed. The routeRt1v must visit all
loading and or unloading resources as specified in the original planPv, in the same order
as before. Hence, there are no changes to the order in which the transportation requests
are executed.

Algorithm 4.6 shows the pseudo-code for theMACA -RR algorithm. In Line 5 the
visiting sequence is constructed. This sequence contains all resources in planPv in which
a loading and/or unload action takes place. The sequence contains these resources in
the same order in which they occur in planPv. Subsequently, not only the schedule, but
also the route contained in planPv is thrown away by the agent. Similar to theMACA -
RP algorithm the plan for vehiclev is then re-computed. In Line 8, besides an interim
scheduleSd1v, also a routeRt1v is computed, which might very well be different from the
original routeRtv.

4.3.3 Properties of the refined methods

Section 4.2.3 describes that the multi-agent context-aware routing algorithm always re-
sults in a Nash Equilibrium, which is considered a crucial property.

For both theMACA -RP as well as for theMACA -RR method, after a finite number of
replannings due to transportation requests and incidents these methods also result in a
Nash Equilibrium (as always assuming that execution will goaccording to plan for all
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agents).
Furthermore, if this process turns out to be too slow, for example if there are many

incidents in a short period of time, it is possible to skip a percentage of replannings and
rely on the operational conflict resolution rules – or alternatively to only replan the first
several locations to visit of the current transportation plan. TheMACA -RP andMACA -RR

methods can be used asanytimeor interruptiblemethods, which continuously attempt to
improve the performance even during the execution of the transportation plans.

4.4 Summary

In this chapter a new single-agent context-aware source-destination algorithm (SACA) is
introduced. The best known result of Kim and Tanchoco (1991)has run-time complexity
Op|Rtr|4 � |Rinf|2q. By a careful analysis of this approach, we succeeded in lowering the
run-time complexity toOp|F| logp|F|q� |ρ|q or Op|Rtr||Rinf| logp|Rtr||Rinf|q� |ER||Rtr|q,
making it much more scalable.

Subsequently we presented a multi-agent context-aware routing method (MACA )
based on theSACA algorithm. MACA guarantees that, if execution goes exactly accord-
ing to plan, deadlocks do not occur. Furthermore, if all agents use the context-aware
approach the end result is a Nash equilibrium – no agents can improve by changing their
plan (without other agents making changes).

By solving conflicts already in the planning stage,MACA improves the predictability
of travel times. For many realistic environments, however,it is also required to consider
uncertainty. This is why the framework presented in Chapter3 contains incidents, which
model malfunctioning transport and infrastructure resources.

The second part of this chapter refines theMACA with respect to incidents. To im-
prove the plan quality in incident-rich environments points in the planning process where
agents are in conflict are reconsidered to improve on earliersolutions (with now more in-
formation available). This is what theMACA -RP method is for. Subsequently, this method
is further improved by allowing the agent to change the routes to execute their requests –
theMACA -RR method.

Section 4.2.3 compared the context-aware routing approachto the classical approach
and showed that both positive examples, where the context-aware routing approach out-
performs the classical approach, as well as negative examples exist. Besides that, there is
another possible drawback; the improved algorithms do consume more CPU time. So, the
question is whether the increased plan quality is worth the additional cost in CPU time. In
the next chapter experiments and the obtained empirical results will be described to test
and compare the transport planning methods presented in this chapter.



Chapter5
Experiments

In the previous chapter several operational planning methods have been described for op-
erational pickup and delivery transportation planning with time-windows. The introduced
methods attempt to improve the performance of the agents as well as the robustness of the
plans. On the one hand, methods were presented that take the plans of other agents into
account in order to have better knowledge about the plan execution already at planning
time. On the other hand, methods were introduced that have better capabilities to deal
with incidents.

In Section 4.2.3 the multi-agent context-aware (MACA ) routing was compared to clas-
sical routing by considering examples. It was shown that both situations whereMACA

outperformed classical routing as the other way around exists. In this chapter the two
will be tested and compared more thoroughly with experiments. The experiments are
also needed to discover the effect of the other methods that were described, such as the
MACA -RP andMACA -RR methods.

This chapter reports the outcomes of our experiments. First, empirical results are pre-
sented about the gain in performance by theMACA approach as compared to theCLASSI-
CAL approach. Second, the influence of the different conflict-resolution rules, which are
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used by the infrastructure agent to prioritize agents, is determined empirically. Finally,
experiments are described in which the incident level increases. This will show whether
theMACA approach is also to be preferred in situations where incidents do occur.

A single experiment is defined by specifying the available transport resources, trans-
portation requests, transport network topology and incident level. The experiments are
divided into two sets:(i) general experiments using a collection of synthetic problem in-
stances referred to as thetest set, and(ii) a realistic setting with airplanes taxiing on the
Schiphol airport network.

The general experiments do not focus on a particular real-life application. Instead,
the transport network topology, the set of transportation requests, the set of transport
resources, the behavior of the agents, and the incident level are varied in order to study
the effect of this factor on the system performance. These synthetic instances are needed,
because we need to control many parameters.

The behavior of the agents is defined by the various planning methods described in the
previous chapter. The experiments attempt to establish relations between the performance
of the planning methods under these varying circumstances.There have been other, sim-
ilar, empirical validations, such as the benchmarks presented in Chapter 2 of Taillard,
Golden, and Van Breedam (The VRP Web, 2007), as well as the large-scale vehicle rout-
ing problem benchmark by Li, Golden, and Wasil (2005). Thesebenchmarks, however,
are for variants of the Vehicle Routing Problem that abstract from the routing problem.
The distance between each pair of customers is simply lookedup in a distance matrix.
No capacities of locations, or the congestion that results from these capacities, are con-
sidered. Furthermore, these benchmarks compare the performance of different planning
methods, but do not follow asystematicapproach to discover potential relations between
the performance of the planning methods and influential environmental or infrastructural
factors.

The other set of experiments in this chapter consider the taxiing of airplanes at
Schiphol airport in the Netherlands. In current practice atSchiphol, airplanes follow a
fixed route from runway to gate and vice versa. These experiments show the benefit of
having the airplanes choose alternative routes at any pointin time themselves. This fixed-
path assumption is not particular to Schiphol airport, it isalso common practice at, e.g.,
Frankfurt airport (Trüg et al., 2004), the fixed-routes assumption by Hatzack and Nebel
(2001), or in bus line domains (Hickman and Blume, 2000).

5.1 Expectations

It is expected that theMACA approach results in statistically significantly better perfor-
mance than theCLASSICAL approach, because all alternative routes that agents can take
are considered, while using theCLASSICAL approach some infrastructure resources might
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be overused. Because theorder in which the agents plan is arbitrary, and theMACA -RP

and MACA -RR methods revise the potential conflicts, we expect those to perform even
better. Most is expected of the latter method,MACA -RR, which also considers alternative
routes for the transport resources while reconsidering priorities in case of conflicts. The
gain in performance comes at a price, we expect that the the higher the performance of the
methods, the higher also the CPU time required to compute thefinal transportation plans.

With respect to theconflict-resolution rulesdescribed in Section 4.2.4, we expect the
plan-based rules to outperform the simple rules. This makessense, because the perfor-
mance of the transport agents depends on their final plans. However, the first-in-first-out
rule to prioritize vehicles accessing a resource has already proven itself in many domains.

We expect the transport networktopologyto have a significant influence as well. An
important factor here is the average number of alternative (approximately equi-distant)
routes between the source and destination locations. The more alternative routes, the
better the context-aware methods can spread the traffic, andalso the less sensitive to
incidents because the agents can avoid infrastructure resources affected by incidents. The
negative influence of the arbitrary order in which agents plan will also be smaller on
networks with many alternative route choices.

Finally, we will see the effect of incidents on the differentplanning methods. We
expect that the context-aware methods still outperform theCLASSICAL approach if the
incident level increases. The strength ofMACA -RR to select alternative routes will prove
most useful in incident-rich circumstances. The next section describes the experimental
set-up, after which the results of the experiments will be described.

5.2 Experimental set-up

For the general experiments a synthetic set of problem instances, referred to as thetest set,
has been used to obtain empirical data. As a starting point, an 8�8-grid network is used
in which 32 transport resources are traveling around. The transportation request load is
192 requests1. Sequential Vickrey auctions (Vickrey, 1961; Sandholm, 1995) determine
the task assignment and then the task execution by the transport resources can begin.
The outcome of the auctioning process already depends on theplanning methods that the
agents use, because these are used to compute the bid values for each transport request by
the agents. Using this as a starting point, several parts will be varied, referred to as the
independent variables.

The agents are forced to do their best to execute all transportation requests assigned
to them; that is, even without any reward they will make the cost for traversing to the

1The number 192 is twice the minimal request load, viz., two instances were merged together. For more
details on the generation of the test set, see Appendix I.
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pick-up and delivery location, unless they are unable to do so due to, e.g., deadlocks or
incidents.

The role of information in our experiments is measured by thechoice of planning
method; some planning methods use different information than others. This is how the
information that is available to the agents in the experiments is manipulated.

Independent variables The independent variables(or experimental variables) are the
planning method, the request load, the incident level, the size, and topology of the trans-
port network, and the number of transport resources. The planning methods, which can all
be found in the previous chapter, are divided into 5 categories: (i) the classical approach,
(ii) multi-agent context-aware (MACA ) planning,(iii) revising priorities (MACA -RP), and
(iv) revising routes (MACA -RR).

Therequest loadis simply measured by the number of transportation requests(issued
in parallel at the beginning). It can be more accurate to takeinto account the minimum
distance from source to destination, as well as the specifiedtime-windows. However, that
is still an approximation as it, e.g., does not take into account the initial locations of the
transport resources2.

An alternative approach would be to define arequest rateinstead of a request load.
If using a request rate (a set of transportation requests pertime unit), one can postpone
doing any measurements during the first few bursts of requests, to prevent including the
cold start (all agents starting from their home locations),which in this thesis is included
in the measurements. However, a small experiment showed it did not influence the results
much, due to the fact that all different planning methods suffer from the same cold start
and that the effect is small because it is averaged over a longtime.

The incident levelis not simply measured by counting the number of incidents. For
each incidentpr, i,τq P I, affecting infrastructure or transport resourcer P RinfYRtr, the
impact 0¤ i ¤ 1, and the durationubpτq� lbpτq are also considered. The following is
used to measure the incident level:

incident level =
¸pr,i,τqPI i � �ubpτq� lbpτq�.

Three differentnetwork topologieswere used in the experiments, which are(i) random
networks,(ii) small-world networks, and(iii) grid networks, all with 64 infrastructure
resources and 128 arcs.

2For the scope of our experiments just counting the number of transportation requests per time unit
sufficed.
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Dependent variables The dependent variables(or performance indicators) computed
for the experiments are the percentage of successfully executed transportation requests,
the average tardiness of all transportation requests, the system welfare, and the CPU cost
(in time) required to finish the particular simulation.

The network utilization is the usage of the infrastructure resources by the agents. The
agent utilization is the amount of time that agents are in a non-idle state (i.e., they are load-
ing, unloading, waiting or driving). To define the network utilization, ranging between 0
and 1, the infrastructure resources are divided into two disjoint sets: the resources with
sufficient capacity to hold all agentsRps� tr PRinf : kinfprq ¥ |A|u and the other resources
Rnps� RinfzRps

. The set ofparking spaceresourcesRps is ignored while computing the
network utilization. Recall that the route of an agentRta � pra,1, ra,2, . . . , ra,Naq is a se-
quence of infrastructure resources, its scheduleSda � pta,1, ta,2, . . . , ta,Naq a sequence of
times at which theses resources are entered and reservations Qprq � A�W is a set of
agent time-window pairs representing the reservations in resourcer (Section 3.3.2).

agent utilizationUA �
a̧PA

max
tPSda

t,

network utilizationUN � ¸
rPRnps

¸pa,rt1,t2qqPQprq t2� t1|A| � tc ,
plan quality (relative reward)µ � ¸t j :o jPOu π jpτ̆s

j , τ̆d
j q

π jpτs
j ,τd

j q ,
CPU cost in timeψ � computation time of a complete experiment.

The definition of performanceµ is the relative system reward, i.e., the achieved reward
for all transportation requests divided by reward that would have been obtained if all re-
quests would have been processed within the specified pickupand delivery time-windows.
The relative system performance is just one of the many possible system performance in-
dicators, which is used as a default in this chapter.

The CPU cost in terms of timeψ is the measured amount of time that the computer
program used to execute the experiment, from the begin to theend and including every-
thing. The machine on which the experiments were performed guarantees that it dedicates
all processor time to the experiments3. An alternative approach would be to measure only
the algorithmic time, instead of the full time of the experiment from start to end, for CPU
costφ . However, as can be seen from the enormous speed (low CPU cost) of theCLASSI-
CAL method, which is used on exactly the same problem instances,this did not influence

3Note that no other applications can interfere and increase the CPU costψ of an experiment. Besides
that the operating system measures the percentage of CPU cycles given to the program, such that one could
also correct in case other processes would be running simultaneously.
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the experiments in this thesis.
For the lowest request load of 96 requests, it is possible to gain the maximum reward

for each request, due to the way the test set is constructed4. For higher request loads,
however, this is not possible. Transportation requests of multiple problem instances are
merged together to form more challenging problem instances, but these requests are to
be executed by the same set of transport resources. Hence, the maximum possible reward
can usually not be reached because of the increased request load, same network, and same
set of transport resources.

All results presented have been obtained by making use of thetransport planning sim-
ulatorTRAPLAS, see Appendix E. A free software environment for statistical computing
and graphics called R (R Development Core Team, 2007) has been used to combine the
output ofTRAPLAS, to plot the graphs and for all further data analysis. All experiments
were done on the Distributed ASCI Supercomputer (DAS-3, seeFigure E.2).

5.3 General experiments

This section describes the results of the general experiments with synthetic problem in-
stances. First, Section 5.3.1 tests and compares theCLASSICAL approach to theMACA

and its variants under normal circumstances. Second, in Section 5.3.2 the results of ex-
perimenting with the different conflict-resolution rules for the infrastructure agents are
presented. Finally, Section 5.3.3 presents empirical results on the performance of the
different transportation planning methods in case there are incidents.

After the general experiments Section 5.4 describes experiments on a real-life trans-
port network (the Schiphol airport network) which demonstrates that the context-aware
methods are usable on real-life networks as opposed to syntesized problem instances.

5.3.1 Classical versus context-aware variants

Consider the situation where the request load is 192 transportation requests. There are
no incidents and the network topology has a grid structure. Figure 5.1 shows a box-and-
whisker plot (Tukey, 1977) for 4 different planning-methodcategories. The plots are
based on 100 samples (10 simulations and 10 different sets oftransportation requests). If
the notches of two box-and-whisker plots do not overlap thisis strong evidence that the
two medians statistically differ (Chambers et al., 1983, page 62).

A relative reward of 1 means that the maximum possible rewardis obtained for all of
the transportation requests, as determined by the reward functionπ jpτ̆s

j , τ̆d
j q P R for each

requesto j P O, whereτ̆s
j PW and τ̆d

j PW are the executed pick-up and delivery time-

4More about how the test set is constructed can be found in Appendix I.
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Figure 5.1: Role of information. With one exception, all methods execute all transporta-
tion requests. TheCLASSICAL method, however, executes only 48.5% on average. The
’+’ symbol indicates the means and the ’�’ symbol is used for outliers.

Planning
method

CLASSICAL MACA -RP MACA MACA -RR

CLASSICAL 0.000 -0.487 -0.528 -0.538
MACA -RP 0.487 0.000 -0.041 -0.051

MACA 0.528 0.041 0.000 -0.010
MACA -RR 0.538 0.051 0.010 0.000

Table 5.2: Tukey Honest Significant Differences table for the planning-method categories.
The value of each cell is the difference in performance meansbetween the two planning
methods. The cell is highlighted if this difference is not statistically significant (i.e.,
p¥ 0.05). The planning methods are ordered by increasing averageperformance (relative
reward).

windows respectively. This maximum reward cannot always beachieved, especially not
if the request load or the incident level increases, or if thenumber of transport resources
decreases.

ANOVA shows that the null hypothesis that the means of all planning-method cat-
egories in Figure 5.1 are equal has to be rejected; there is atleast one that significantly
differs from the others. In such a case the post hoc TukeyHSD (honestly significant differ-
ence, See Miller (1991)) test provides more information. The corresponding TukeyHSD is
presented in Table 5.2 and provides a pair-wise comparison between all planning-method
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categories. In this table, the planning-method categoriesare sorted in increasing dif-
ference in mean, which is why the gray cells, indicating the difference in mean is not
statistically significant, are along the diagonal.

It can be concluded that theMACA method has been underestimated in the expecta-
tions. Its performance is actually in between theMACA -RP andMACA -RR methods. The
expectations about the CPU time costs were correct (see the right plot in Figure 5.1), it
can be seen the CPU cost (in time) required by the planning methods increases if more
information is considered by the planning methods.

As opposed to theMACA methods, theCLASSICAL method is not able to execute
all transportation requests. This is due to deadlocks that occur without any coordination
between the agents. On average, theCLASSICAL method executed 48.5% of the trans-
portation requests.

That the performance, the relative system reward, depends on the chosen planning
method and nothing else, can be shown by considering the correlation coefficient. The
correlation coefficientr between performance and planning method in Figure 5.1, using
the modelµ � β0�β1M, is 0.99. This means that 97% of the total variance in perfor-
mance is under experimental control (is due to the choice of planning method).

The right plot in Figure 5.1 shows the sole strength of theCLASSICAL method, it is
the cheapest in terms of CPU cost. Although this might be an advantage for very large
transportation instances, theMACA method is usually fast enough for practical instances.

In Figure 5.3, theCLASSICAL approach is given a second chance at problem instances
with higher request loads. It might turn out that it is the only method that can still oper-
ate on large problem instances. However, the figure clearly shows that theCLASSICAL

planning does not work well at all. This bad performance is due to the occurrence of
deadlocks. Of course, due to the fact that only few transportation requests are executed
successfully, the relative reward of the agents is close to zero as well. It is clear that,
for an agent, the plans of the other agents play an important role and must be taken into
account to avoid deadlocks. Without incidents, and with therestriction that agents always
drive to a resource with sufficient capacity at the end of their plan, it can easily be proven
that deadlocks cannot occur with neither theMACA method, nor withMACA -RP, nor with
MACA -RR.

It can be concluded that agents must consider the plans of other agents while creating
their transportation plans. TheMACA method performed better than was expected, but
the best performing method is still theMACA -RR method. Furthermore, theMACA -RR

method is also the most expensive in terms of CPU costs.
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Figure 5.3: The percentage of executed transportation requests withCLASSICAL planning
on grid networks.

rule description

random for baseline comparison, chooses a random agent to go first.
delays agent with highest sum of expected delays goes first.

deadlines agent with lowest valuet�φo
Mo

goes first, wheret�φo is the amount of
time until the deadline andMo is the expected time required to execute

the request, for all requestso POa assigned to the agent.
profits agent with lowest expected profits goes first.
wait agent that waits longest to enter its current location goes first.
task agent that is assigned the task that has the highest reward goes first.

inv task the reversed ordering of the task heuristic, used to see the effect of bad
versus good heuristics.

Table 5.4: List of conflict-resolution rules used by theMACA -RP andMACA -RR methods.
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Planning
method

RP

DELAYS

RP

PROFITS

RP DEAD-

LINES

RP INV

TASK

RP

RANDOM

RP

TASK

RP WAIT

RP DELAYS 0.000 -0.007 -0.018 -0.019 -0.020 -0.024 -0.051
RP PROFITS 0.007 0.000 -0.012 -0.013 -0.013 -0.017 -0.044
RP DEADLINES 0.018 0.012 0.000 -0.001 -0.002 -0.006 -0.033
RP INV TASK 0.019 0.013 0.001 0.000 -0.001 -0.005 -0.032
RP RANDOM 0.020 0.013 0.002 0.001 0.000 -0.004 -0.031
RP TASK 0.024 0.017 0.006 0.005 0.004 0.000 -0.027
RP WAIT 0.051 0.044 0.033 0.032 0.031 0.027 0.000

Table 5.7: Tukey Honest Significant Differences table for the MACA -RP methods. The
value of each cell is the difference in performance means between the two planning meth-
ods.

Planning
method

RR INV

TASK

RR

PROFITS

RR

DELAYS

RR

RANDOM

RR DEAD-

LINES

RR

TASK

RR

WAIT

RR INV TASK 0.000 -0.003 -0.012 -0.013 -0.013 -0.013 -0.026
RR PROFITS 0.003 0.000 -0.009 -0.010 -0.010 -0.011 -0.023
RR DELAYS 0.012 0.009 0.000 -0.001 -0.001 -0.002 -0.014
RR RANDOM 0.013 0.010 0.001 0.000 0.000 -0.001 -0.013
RR DEADLINES 0.013 0.010 0.001 0.000 0.000 -0.001 -0.013
RR TASK 0.013 0.011 0.002 0.001 0.001 0.000 -0.013
RR WAIT 0.026 0.023 0.014 0.013 0.013 0.013 0.000

Table 5.8: Tukey Honest Significant Differences table for the MACA -RR methods. The
value of each cell is the difference in performance means between the two planning meth-
ods.

5.3.2 Conflict-resolution rules

Figures 5.5 (forMACA -RP) and 5.6 (forMACA -RR) show box-and-whisker plots for the
different conflict-resolution rules listed in Table 5.4. The wait rule, which considers the
amount of time a vehicle has already been waiting to determine its priority, works best in
both MACA variants. Interestingly, this conflict-resolution rule also is among the fastest
with respect to the consumed CPU time.

Tables 5.7 and 5.8 display the TukeyHSDs for theMACA -RP and MACA -RR meth-
ods respectively. TheMACA -RR method using thewait heuristic results in the highest
performance on grid networks with relatively small requestload and no incidents.

The good performance of thewait heuristic can be understood by appreciating the in-
tuitive resemblance with the first-come-first-served heuristic (Kruse, 1984), which works
so well in scheduling. Thewait heuristic aims to minimize the waiting time of transport
resources, by giving priority to the longest waiting transport resource. Hence, thewait
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Figure 5.9: The main effect of varying the request load on grid networks.

heuristic attempts to increase the throughput of transportation requests, which increases
the performance of the agents.

In Figure 5.9 the results are shown for increasing request load. The performance along
the vertical axis is the sum of the rewards of all agents. It can be seen that the performance
of all agents increases up to almost 300 transportation requests. The agents have time left,
so they can increase the total reward by the arrival of additional transportation requests.
There is a point at which the total reward stops growing, which happens to be at almost
300 transportation requests. This was expected because of network saturation. Figure 5.9
also shows that the network utilisation does still grow beyond 300 transportation requests,
but not as much as below 300 requests. Beyond 300 requests, the drop in total reward
is due to the fact that agents are enforced to execute (instead of simply drop) requests
assigned to them, and this has a negative effect on their subsequent transportation requests.

Later, in Figure 5.10, it can be seen that therelative rewardperformance decreases
right from the beginning when the request load is increasing. This is because the relative
reward is computed relative to an upper bound on the reward. The upper bound assumes
all transportation requests are executed within the specified time-windows, which cannot
be reached by the agents and the difference increases with the number of transportation
requests.
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Figure 5.10: The relative reward for theMACA -RP method with different heuristics on
grid networks.

5.3.2.1 MACA -RP

Figure 5.10 depicts the performance difference of the variants of theMACA -RP method.
TheMACA method is presented for comparison, and the other methods differ in the heuris-
tic used to prioritize the agents during the rescheduling process.

Thewait heuristic again outperforms the others (statistically significant) when look-
ing at the average relative reward. In fact, it is the only used heuristic that significantly
outperforms theMACA approach.

The network utilisation grows along with the request load until almost 50% utilization.
It can be seen that the speed at which the network utilizationgrows decreases and at the
same time the performance decreases slower.

The CPU cost (in time) depicted in Figure 5.11 shows that theMACA planning method
can be used for realistically-sized applications. For theMACA -RP methods it will depend.
If there is enough time, it is worth it (due to the improved plan quality). However, if speed
is very crucial and there is few time available, theMACA method might be a better choice.

Figure 5.11 also reveals that the CPU cost required to do a simulation run also depends
on the choice of heuristic. Generally, heuristics that leadto better performance in plan
quality seem to be faster with regard to simulation speed as well. This can be understood
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Figure 5.11: CPU cost (in time) required byMACA -RP for different heuristics on grid
networks.

by recognizing that heuristics that make good choices aboutwhich agent should create
reservations first result in fewer conflicts that have to be solved later on. Hence, the
remaining process can be done in less time.

Except for theMACA method, which is just a lot faster, theMACA -RP method using the
wait heuristic must be mentioned again as being the best method, this time with respect
to the consumed CPU costs.

5.3.2.2 MACA -RR

Figure 5.12 shows thatMACA -RR with thewait heuristic results in a slightly higher rel-
ative reward (yet statistically significant) than theMACA -RP andMACA methods. At the
same time, as shown in Figure 5.13, CPU cost (in time) is higher for theMACA -RR vari-
ants. Again, with respect to the CPU costs, the choice of heuristic is important and the
wait heuristic is cheaper than the other heuristics in terms of CPU costs.

Figure 5.13 shows that instances with less than, say, 200 requests can be solved
quickly. Afterwards the required CPU time grows rapidly, especially with approximately
350 transportation requests. The reason why the CPU cost increment reduces beyond this
point is that the transport network becomes congested and agents are just going to take
much longer to execute the requests. As can be seen in the airplane taxiing experiments
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Figure 5.12: Average relative reward for theMACA -RR method for different heuristics on
grid networks.
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networks.



122 Operational Transport Planning in a Multi-Agent Setting

Model M3: π � β0�β1W.
Model M2: π � β0�β1W�β2M.
Model M1: π � β0�β1W�β2M�β3WM.

Model Res.Df RSS Df Sum of Sq F Pr(>F) R2

3 12094 109.0 0.81
2 12074 31.3 20 77.7 4158.5 < 2.2e-16 0.94
1 12054 11.3 20 20.0 1071.1 < 2.2e-16 0.98

Table 5.14: General linear test: comparison of the full model and two reduced models.
Variableπ refers to the relative reward over all transportation requests,W to the request
load andM the planning method.

later in this thesis (Section 5.4), it is possible that, whenadding a lot more transportation
requests, the growth in CPU cost will increase again at some point, and oscillates like
this. The question whetherMACA -RR methods are to be preferred overMACA -RP meth-
ods again depends very much on the problem at hand, mostly with respect to the time
available to the planning agents. A general conclusion herecannot easily be made.

5.3.2.3 Evaluation of the chosen planning method and request load

Looking at the plots of Figure 5.3, 5.10 and 5.12, which show the performance of the
planning methods while increasing the request load, it seems the slopes and intercepts are
not equal for all different planning methods. Analysis of covariance can show whether
these differences are indeed statistically significant. The request load here is used as the
covariate.

Three different models are computed. The first is the full model M1, which takes into
account the planning method, the request load and their interaction. In the first reduced
model M2 the interaction effect is ignored, and a second reduced model M3 also lacks the
planning method. If model M2 differs statistically significant from model M3, this means
the planning method is required to model the performance. Ifmodel M1 in turn differs
statistically significant from model M2, this means also theinteraction effect between the
planning method and the request load adds to the accuracy of the model.

For the full model it is verified that the error has a normal distribution and that the
variance is the same for all data (homoscedasticity). The results of the general linear test,
which is used to compare the three models to each other, are presented in Table 5.14. Also
included is the explained varianceR2.

The full model M1 is the best model according to Table 5.14, the slope and intercept
are statistically significantly different. Three models were tested: model M1 stating that
both the slopes and intercepts are different for at least oneof the planning methods. Model
M2 stating that the intercepts differ, but the slopes are allthe same. And model M3 stating
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Figure 5.15: The relative reward (averaged over all requests) for a selection of planning
methods on grid networks; the incident level is increasing and the request load is fixed to
192 requests.

that all slopes and intercepts are the same. Considering Pearson’sR2, which indicates the
explained variance in the model, it must be noted the difference of 4% between model M1
and M2 should not be overestimated. The interaction effect between planning method and
request load does not add much.

If the request load increases, the differences between the planning methods increases
as well. Thewait heuristic results in the best planning method. TheMACA -RP method is
preferred, as it performs equal toMACA -RR, but is also faster.

5.3.3 Incidents

In this section experiments are described that show what changes with respect to the role
of information in operational transport planning if the incident level increases. First,
the effect of increasing incident level on the performance of the planning methods is
investigated. Later, the combination of various request loads as well as various incident
levels is considered.

Figure 5.15 and 5.16 shows that the two methods that were superior so far, i.e.,MACA -
RP andMACA -RR with thewait heuristic, are also the best performers if the incident level
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Figure 5.16: The CPU costs (in time) required by the selection of planning methods on
grid networks; the incident level is increasing and the request load is fixed to 192 requests.

increases. The reason for this is that all methods degrade approximately equal if the
incident level is increased. Apart from the small difference between RR-wait and RP-
wait, the difference in performance of all runs with incidents is statistically significant.

Attempts to create methods that degrade less if the incidentlevel increases, should, if
possible, adopt a different approach. One such possibilityis to insert slack into the plans
of the agents, which is described in the following section.

5.3.3.1 Slack insertion

One idea to try to improve the robustness of the plans of the agents is to introduce slack
into the plans of the agents. Slack is additional waiting time, that slows the agent down if
no incidents occur, but might improve the situation in case of incidents. For a low incident
level, agents might not even have to replan, because they canjust subtract the effect of
the incident from their slack and proceed as they would have without incidents. Inserting
slack is realized by having agents multiply the distance of each resource by 1.1 or 1.2 (for
10% and 20% slack respectively) if no incidents are known. Ifan incident occurs, the
slack is decreased likewise (sometimes removed completely).

Obviously, if every action of the agents goes exactly according to plan, then inserting
slack only decreases the performance. However, the idea of slack inserting is especially
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Figure 5.17: The relative reward (average per task) for a slack-inserting version of the
wait heuristic on grid networks; the incident level is increasing and the request load is
fixed to 192 requests.

meant for situations when incidents areexpectedto occur. The intention of slack insertion
is that, even if agents are somewhat delayed, they can still travel within the time-window
of the reservation they made and arrive at their next location in time. Inserting slack is
an attempt to achieve graceful degradation of the performance of the agents in situations
where the incident level increases.

In Figure 5.17, theMACA -RP and MACA -RR methods are used, both with thewait
heuristic. To both of these methods first 10%, then 20%, slackis used for each reservation
(i.e., each location they visit) the agents make.

The figure shows a negative result. The relative reward of theagents only gets worse
if 10% or 20% slack is used compared to the situation where no slack is used. There is
no turning point beyond which it is profitable to insert some slack the plans. The reason
for this is that theMACA -RP and MACA -RR method already have the agents resched-
ule if an incident occurs. But since other experiments already showed that these are
our best-performing methods, inserting slack cannot result in more reliable plans for the
transportation planning problem that is central in this thesis.
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Model M6: µ � β0�β1I .
Model M5: µ � β0�β1I �β2M.
Model M4: µ � β0�β1I �β2M�β3IM .

Model Res.Df RSS Df Sum of Sq F Pr(>F) R2

6 11628 96.5 0.74
5 11609 77.6 19 19.0 180.5 < 2.2e-16 0.79
4 11590 64.1 19 13.4 127.9 < 2.2e-16 0.83

Table 5.18: General linear test: comparison of the full model and two reduced models.
Variableµ refers to the relative reward over all transportation requests,I to the incident
level, andM the planning method.

5.3.3.2 Evaluation of the factors information and incidentlevel

The full model M4 is the best model according to Table 5.18. The differences between
the planning methods become smaller if the incident level increases. Furthermore, the
performance of theMACA method drops when the incident level is high. In Appendix J,
Table J.2 shows the coefficients for model M4 in its first column.

5.3.4 Network topology

In this section the influence of network topology on the performance is considered. In
Section 5.1 we expected that performance depends on networktopology, via certain prop-
erties of the network topology, such as the network degree, diameter, or average number
of alternative paths between source and destination. Figure 5.19 and 5.20 depict the differ-
ences in performance for the grid, random, small-world, andscale-free topologies, while
increasing the request load and incident level respectively.

To make the comparison between different network topologies more fair, an equal
number of resources (locations)andconnections between the resources is used. In cases
where the transport network has fewer connections (e.g., grid networks and scale-free
networks have fewer connections than small-world networks), random connections are
added to the network to obtain the desired number of connections.

In Figure 5.19 it can be seen that random and small-world networks perform better
than grid networks, and a lot better than scale-free networks, if the request load increases.
Of course, for scale-free networks, the hubs (locations with a lot of connections) create
bottlenecks in the network that lead to a decrease in performance.

Figure 5.20 shows a similar situation for increasing incident level. Random networks,
followed by small-world networks, seem less sensitive to incidents than the other network
topologies.

Figure 5.21 show the average network utilization on different transport network
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Figure 5.19: The relative reward (average per task) for theMACA -RR method withwait
heuristic on four different network topologies.

topologies. The upper-left plot represents a base situation (low workload, no incidents).
The plots on the right side have a high workload, the plots on the bottom include incidents.

Combining this figure to Figures 5.19 and 5.20 it can be seen that high network utiliza-
tion results in decreased performance. Looking further at the properties of the networks,
the diameter of the network explains why. The grid topology has the greatest diameter,
the randomized network has the smallest diameter.

Small-world networks have the property that the path lengthgrows logarithmic in the
number of infrastructure resources. Wang and Chen (2003) present an overview of this
and other properties of small-world and scale-free networks. This path-length property
explains why it performs so well, because small-world networks have a smaller average
distance from source to destination location.

5.4 Airplane taxiing experiments

Besides the experiments based on a synthetically generatedtest set, a real-life transport
network is also considered. Experiments were conducted on the Schiphol airport network
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Figure 5.20: The relative reward (average per task) for theMACA -RR method withwait
heuristic on four different network topologies; the incident level is varied and the request
load is fixed to 192 requests.

in the Netherlands (see Figure 5.22)5. For this transportation network, the taxiing problem
of aircrafts (on the ground) plays an important role that is crucial to the performance of
the airport (Ter Mors et al., 2007). The usual sequence of an airplane after touch-down is
to taxi to a gate, then wait for services, such as cleaning, boarding, safety checks. Finally,
before taxiing to a runway for take-off, sometimes a de-icing station must be visited. Due
to the approximately 300 airplanes (a number that is increasing) per day that go through
this process, efficient and robust routing methods are required.

The goal of the airplane taxiing experiments is to compare current practice at Schiphol
to a more sophisticated approach. Current practice is to usea context-unawareapproach
(such as theCLASSICAL method or Algorithm 2.2 of Hatzack and Nebel), which in these
experiments is compared to a context-aware approach, such as theMACA method (Algo-
rithm 4.1).

The role of information on agent performance is reconsidered, while zooming in on
the context-aware shortest-path algorithm. For the routing component, the type of infor-
mation might also be crucial to the performance of the system. A secondary goal is to

5The network model of Schiphol airport was kindly provided bythe National Aerospace Laboratory
(NLR).
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Figure 5.22: Schiphol airport network consisting of 1016 road resources.
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show the usefulness of the context-aware routing approach on a real-life transport net-
work.

In a multi-agent system, such a routing algorithm can be applied sequentially, once
for each agent. An individual agent profits from being early in this sequence, as it is less
bothered by reservations of other agents. The relation between the actual sequence and
the performance of the total system is less clear and also part of the experiments. This
is not yet a comparison between sequential and parallel routing. Parallel routing might
further improve the performance. A parallel approach is typical in MIP formulations,
which, unfortunately, cannot yet be applied to realistically sized problem instances.

To make a fair comparison between the two approaches, each algorithm was used to
calculate a route for the same start-destination pair, given the same set of prior reser-
vations on the infrastructure. For each set of reservations, the average time to find a
conflict-free path for 20 randomly chosen start-destination pairs is computed. To get an
impression of how plan quality and CPU costs (in time) dependon the number of reserva-
tions, the experiment starts with an empty set of reservations and then grows. For each set
of reservations, the last conflict-free plan (out of the 20 intotal) found is used to obtain
new reservations. Those are then added to the existing set ofreservations, and the new
set is used to calculate again the time for route finding. Thisprocedure is repeated for
3000 iterations. This means that at the end of the procedure reservations for 3000 source-
destination paths are stored in the transportation network. The experiment is run twice:
the first time, plans generated by the context-aware approach with distance heuristic were
used to make reservations, the second time the plans obtained by the algorithm of Hatzack
and Nebel (see Algorithm 2.2) were used. At all times, the start time of an experiment is
ts� 0.

In Section 4.2.1.1 the time complexity of the single-agent source-destination routing
algorithm was analyzed. Recall that Corollary 4.7 expressed the time complexity in the
number of infrastructure resources and transport resources in the case that each transport
resource does not visit any infrastructure resource more than a constant number of times.
Therefore, a simple variant of the context-aware routing algorithm is introduced in the
experiments that visits each resource at most once (only acyclic routes). Furthermore,
because of the resemblance to A*, at first sight, a context-aware A* variant is also in-
cluded to be able to see the differences between the two algorithms in the experiment.
Remark 5.1 defines these two variants.

Remark 5.1 In the upcoming experiments, two variants of the context-aware source des-
tination algorithm (Algorithm 4.1) are also considered forcomparison. These are:

• A context-aware variant of A* algorithm (Dechter and Pearl,1985), the context-
aware routing algorithm can use an admissible and consistent distance heuristic
hpq, which guides the search process towards the destination. Agood candidate for
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this functionhpq is the distance between source and destination if the presence of
other agents is ignored.
For the A* variant of the algorithm, several modifications are necessary:(i) t�Dprq
in Line 8 must be replaced byt�Dprq�hpr, rdqwhererd is the destination resource,
(ii) Line 17, where the visited free time-window is removed from the set of free
time-windows, has to be removed from the algorithm (it is notanymore sufficient
to consider free time-windows only once) and(iii) besides an OPEN list a CLOSED
list must also be considered. The OPEN list keeps track of those nodes that need to
be examined, while the CLOSED list keeps track of nodes that have already been
examined.

• A simple modification of the context-aware routing algorithm is not to allow cycles
in an agents plan. For theacyclic variant of the algorithm, in Line 13, only suc-
cessors are considered that are both reachable (inρpr i , tiq) and resourcer i does not
occur in the previous part of the plan of the agent6.

In Section 5.4.1 the results of the comparison between a context-aware and a classical
context-unaware routing approach are presented. Subsequently, Section 5.4.2 describes
the effect of the sequence in which agents plan. It is obviousan agent is better off when
allowed to make reservations for their plan before other agents, but this section will show
whether the performance of the total system is also influenced by the order in which
agents create reservations.

5.4.1 Context-aware versus classical routing

From Figure 5.23a it can be concluded that the context-unaware approach of the algorithm
of Hatzack and Nebel is so fast, the context-aware algorithms look slow by comparison.
A closer look reveals that the context-aware algorithms arestill quite fast, as a solution
is found on average within two tenths of a second. Also, the 95% confidence intervals
are reasonably small, so this performance is reasonably stable. With regard to the dif-
ferent variants of the context-aware algorithms, it can be seen that the no-cycles variant
is significantly faster than the other two, despite the fact that this version has to check
for cycles in the routes of the agents. Note that the context-aware approach with distance
heuristic requires about the same amount of CPU costs (in time) as the version that utilizes
no heuristic. The cost of the additional open list operations – the version with distance
heuristic must check for duplicates on the open list – more orless cancels out the benefits
of having an context-aware search.

Furthermore, a clear notch is visible in Figures 5.23a and 5.23b, just before 80,000
reservations, which shows the CPU cost (in time) as well as the number of open list

6Note that Corollary 4.7 applies here.
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Figure 5.23: Results for the case where plans generated by the free-path method were
used to make reservations.

operations is not growing monotonically for an increasing number of reservations in the
transport network. Intuitively, the more reservations there are, the more difficult it is to
search a path through the transport network. However, afteradding certain reservations,
the search might become easier all of a sudden, because a “difficult” part of the network
does not have to be searched anymore (due to a reservation nowprohibiting this). The
exact position of such a notch depends on the transport network and the order in which
agents create these reservations for traveling to their desired target locations.

Looking at the cost of the generated plans (Figure 5.23d), the plans generated by the
no-cycles variant are equally expensive as those generatedby Algorithm 4.1 with or with-
out distance heuristic, both of which are optimal. The plansmade by the context-unaware
algorithm of Hatzack and Nebel are slightly longer (in time). The context-aware planner
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Figure 5.24: If cycles are allowed and there are many reservations of other agents present
in the network, the context-aware algorithm often producesplans with a cycle. An exam-
ple of a produced shortest path is highlighted in red, and theside-steps are indicated with
the purple circles. Such plans are not considered by the acyclic version of the routing
algorithm.

with or without distance heuristic often steps aside from a straight line for other agents
to pass in their plans, see Figure 5.24. This is not allowed bythe no-cycles planner (as it
would induce a cycle). However, the no-cycles planner stillgenerates equally expensive
plans, because it usually can insert extra waiting time earlier in the plan. This also results
in the shortest plan lengths. In general, this can lead to sub-optimal plans.

For the plots in Figure 5.25, the results are given using plans made by the context-
unaware algorithm to make new reservations. Although the aforementioned is still very
fast, the plans made by the context-unaware algorithm are significantly more expensive.
The reason is that many shortest paths will make use of the same resources, so after a
while a number of bottleneck resources will emerge, dramatically deteriorating the per-
formance of the algorithm of Hatzack and Nebel.

The context-aware planners still manage to plan around the bottleneck resources to a
large extent, but the search process is slowed down considerably, with an average CPU
costs (in time) of half a second per shortest path call, and frequent outliers of one or
even two seconds for a single shortest-path call. The context-aware planner with distance
heuristic suffers especially, presumably because this distance heuristic, which is based on
the shortest path without reservations, directs the searchright into the congested area of
the infrastructure.

5.4.2 Planning in sequence

From Figure 5.23d it is already clear why agents would preferto plan before others make
any reservations: the cost of the average plan increases linearly with the number of reser-
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Figure 5.25: Results for the case where plans generated by context-unaware Algorithm 2.2
of Hatzack and Nebel were used to make reservations.

vations in the system. Figure 5.26 shows that if an agent is 400th in line to make a plan,
then its plan cost will approximately be twice the cost of theminimum-cost plan, which
is the shortest path when reservations are not taken into account.

This does, however, not mean that the sequence in which airplanes plan makes a
difference to the performance of the totalsystem. We show the performance of the total
system for a group of 500 airplanes routing from and to randomresources in the Schiphol
infrastructure. The same tasks are repeated 100 times with different random permutations
in which the airplanes create their plans and make the reservations.

The relatively small 95% confidence intervals shown in Figure 5.26 indicate that for
the Schiphol airport network the order in which airplanes reserve their plans is not signif-
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icant; the overhead for beingnth in line does not vary greatly.

5.5 Summary

In this chapter two sets of experiments were described: the general experiments on oper-
ational transportation planning and the airplane taxiing experiments.

General experiments The first part of the chapter is about the general experiments. The
planning methods were ordered by increasing plan quality. The MACA method has been
underestimated and should actually be in between theMACA -RP andMACA -RR methods
according to the experiments. It outperforms theMACA -RP method not only in plan qual-
ity, but besides that it has much lower costs in terms of CPU time. The ordering of the
planning methods with respect to CPU cost in time matched ourexpectations. Knowing
the algorithms, this was much easier to expect in advance than the plan quality.

Interestingly, the general experiments showed that the costs in terms of CPU time
depend on the choice of heuristic. Generally, it turned out that heuristic that resulted in
higher performance also performed better with respect to CPU time. If agents that make
better choices (i.e., use better heuristics) finish creating their plans more quickly.

With respect to incidents, the experiments in Section 5.3.3showed that the perfor-
mance of the agents decreases (following an S-shaped curve)if the incident level in-
creases. Furthermore, the experiments showed that the difference between the perfor-
mance of the various planning methods fades out if the incident level increases.

Section 5.3.4 described the experiments for different transport network topologies.
The scale-free topology showed the worst performance, which can be understood, because
of the nodes with many connections leading to bottlenecks inthe infrastructure. The data
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obtained with the experiments further showed that it was thepath length that influenced
the performance. No significant relation between the numberof alternative paths between
source and destination resource and the performance was found in the experiments.

Airplane taxiing experiments After the general experiments airplane taxiing on
Schiphol airport is considered. Current practice at Schiphol is that airplanes follow fixed
routes from runway to gate and back. The experiments in this chapter show, however, that
using a context-aware routing method that dynamically inspects alternative routes at any
time results in much better performance. Of course, ethicalor legal aspects, which might
prevent Schiphol to change their current practice, are beyond the scope of this thesis.

The context-aware shortest path algorithm is, on this realistic Schiphol airport trans-
port network, compared to a context-unaware routing approach. Furthermore, two vari-
ants of the context-aware shortest path routing, are also considered in the experiments.
These are a context-aware A* variant and a version that does not allow to visit resources
more than once (only acyclic routes are allowed).

The first thing to notice is that the context-unaware approach is much faster than the
other algorithms. The context-aware routing algorithms, however, are also fast. Out of
the three context-aware variants, the acyclic version is quite a bit faster than the other two.

Furthermore, it is clear from the experiment that the context-aware algorithms per-
form much better than the context-unaware approach, especially in situations where de-
tours might be profitable. There happens to be no significant difference in performance
between the context-aware shortest path algorithm and its acyclic variant. Apparently, in
these experiments it is the case that when cyclic routes are used by the former algorithm,
the latter can usually introduce some additional waiting time to end up with the same
performance.

Although it is clear that agents can create better plans if they plan before other agents
store their reservations, in the Schiphol airport experiments the order in which agents
plan does not make a big difference to the total performance of all agents together. It
appears that these performance differences that result of going first or second are leveled
out between the agents. We certainly do not claim that this result holds for different
network topologies.

Final note In general the default transportation planning algorithm should be a context-
aware algorithm. If there is enough time, use theMACA -RR method with thewait heuris-
tic. If time is critical then theMACA method might be the best choice. If there is some
time for research available, it might be possible to improveon this with perhaps some
domain specific heuristics7.

7In such situations the transport planning simulatorTRAPLAS, which is used for all experiments in this
thesis, and its 3D-visualization project calledTRAPLASVIZ are both available at SourceForge.



Chapter6
Conclusions and extensions

In this thesis we have introduced a new framework for pickup and delivery transport
planning, and we tested and compared several new approachesto compute a pick-up
delivery transportation planning for a set of vehicles taking into account time constraints
for loading and unloading.

The framework distinguishes transport agents and infrastructure agents. The transport
agents create transportation plans and they communicate with the infrastructure agents to
compute the reservations for accessing the infrastructureresources by the vehicles. This
results in a flexible framework where the infrastructure agents can use different policies
(such as first-come first-served). Furthermore, in case of incidents the infrastructure agent
can inform the transport agents that will be affected by the incident, and modify their
reservation(s) accordingly.

Chapter 5 describes the experiments that were performed, varying the transport net-
work topology, the request workload, and the level of incidents. We have seen that the
influence of incidents greatly depends on the transport network topology. Intuitively, net-
works with more alternative equidistant routes between thepickup and delivery locations
are less sensitive to incidents than other types of networks.

The main results of our research are the following:

137
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• First of all, by a careful analysis of the context-aware routing approach, we have
succeeded in lowering the time complexity of the context-aware routing algorithm
of Kim and Tanchoco in a significant way making it much more scalable.

• Secondly, we have investigated the effect of several policies of the infrastructure
agents. Of these policies, the wait policy outperforms the other policies both in
plan quality as well as in computation time.

• Thirdly, we have investigated the role of incidents in context-aware routing. We
can conclude thatMACA -RP and MACA -RR are indeed more robust thanMACA .
Random and Small-World networks are the least sensitive to incidents, while scale-
free networks have the worst performance.

• Fourthly, with the airport taxiing experiments we have shown that MACA also
works on a realistic network. Dynamic route planning can significantly improve
the throughput of the airport.

In general the default transportation planning algorithm should be a context-aware algo-
rithm. If there is enough time, use theMACA -RR algorithm with wait heuristic. If time is
criticial, theMACA algorithm is the best choice.

There are many more experiments imaginable, as well as many extensions. The fol-
lowing list presents some extensions, which we found interesting.

Delta heuristic While reconsidering the example given in the introduction,Section 1.3,
we came up with the idea of a heuristic that might outperform the ones described in this
thesis. The example showed that it would do good to the total performance of the system if
the priority of airplaneA4 would be increased. However, none of the mentioned heuristics
does so.TODO

How to compute the delta value of agentA4? Assume that airplanesA1, A2 andA3

reserve their plans, while ignoring any conflicts between those. Now compute the optimal
plan forA4, given that the plans ofA1, A2 andA3 remain unchanged andA4 is not allowed
to introduce any new conflicts with those plans. The delta value of agentA4 is the cost of
this plan minus the cost of the plan in caseA4 could reserve its plan prior toA1, A2 and
A3. Note that this delta value is always zero or positive (plan costs never decrease after
letting another airplane make its reservations first).

Using this delta heuristic airplaneA4 would in all cases reserve its plan (along re-
sourcesr16, . . . , r12) prior to the other airplanes. This still is not the optimal plan, in
which airplaneA4 must select the bottom route along resourcesr21, . . . , r11.

K-shortest path routing The approach of Hatzack and Nebel has been used in the
experiments in this thesis as an example of an approach that first computes a route (or uses
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static routing), and then solves conflicts. This approach can be extended by considering
k shortest paths withk¡ 1. Then, for each of thek routes, the conflicts are solved and
the best route will be chosen. This approach can significantly improve the results if the
transport network allowsk routes that do not have too much overlapping resources and
at the same time are all approximately of the same length. There are many algorithms
published to find thesek shortest paths, such as Eppstein (1998).

Distributed version Although theMACA -RP and MACA -RR are not completely cen-
tralized algorithms (the supervisor can reschedule any subset of agents and there can be
multiple supervisors), some steps can be made towards completely distributed algorithms.
In the field of Dynamic Traffic Management (Zuurbier et al., 2006), for example, it is not
acceptable to have a routing algorithm with a time complexity depending on the number
of transport resources or the number of infrastructure resources in the system. Methods
developed in this field determine crossroad priorities based on local information, which
might be necessary for large-scale systems.

Multi-objective routing There are many different performance indicators. Hence, itis
likely that the actors have different objectives. It is possible to optimize multiple objec-
tives while searching plans for the vehicles. This can be achieved by integrating Traplas
and Samcra (P. Van Mieghem and Kuipers, 2001; Kuipers and Mieghem, 2005). Samcra
can search for an optimal plan given multiple objectives.

As an example, we consider the use of the following three metrics: (i) time, like
before (but scaled between 0 and 1),(ii) network utilization (minimize resource load),
and (iii) incident count (gathered historic data). The idea of the second objective is to
avoid resources with many reservations, because the probability for an incident is greater
for such resources). The idea of the third objective is to avoid resources, where there have
been problems in the past. Hence, the two additional objectives attempt to minimize the
probability of incidents along the route.

An experiment we performed is to give the first metric the highest priority. In case
of ties we considered the second objective. If there was again a tie, the third objective
decided on the plan. This did not significantly improve our results. However, Samcra
actually uses a different mechanism to combine the different objectives, which might lead
to better results. It considers all objectives and chooses the plan that minimizes the worst
objective.

Reconsidering waiting time The context-aware routing algorithm always claims sub-
sequent resources as soon as possible, never spending extratime in the current resource if
not necessary. This fixed strategy might lead to congested resources. It could sometimes
be advantageous to delay the traversal (if possible by waiting in a parking space resource),



140 Operational Transport Planning in a Multi-Agent Setting

thereby reaching the congested area later, while still reaching the destination at the same
time. This can decrease network utilization and leave more room for the other vehicles
that still have to create reservations.

Arriving too early For problem instances where agents arrive at the source or destina-
tion location of a transportation request too early, it is possible to compute whether the
agent should slow down before arriving at this location, or arrive too early and take the
corresponding penalty. The latter might be a better decision if the agent is in a hurry to
reach other locations later in its plan. This problem can be solved by formulating this as a
linear program, which can be solved in polynomial time. Of course, if this is done often,
it can slow down the planning method considerably. For the experiments in this thesis this
is not an issue, because the instances are intentionally made such that agents are always
too late, or just-in-time in the optimal case.

Optimization stage Several approaches are described in this thesis that all produce
feasible transportation plans. If there is remaining time available, one possible idea to
make use of this time is to introduce an optimization stage. Many local search techniques
exists that can be used in an attempt to further increase the performance.

Communication incidents The incidents that have been considered in the experiments
in this thesis are malfunctioning resources. The speed of infrastructure or transport re-
sources was reduced by a factor (the impact of the incident) between 0 and 1. Another
common source of incidents is failing communication between transport resources and
the planning system. For example, in container terminals the speed of transport resources
is reduced if the transport resources have no communicationwith the system.

Two more topics that we have considered are collaboration byexchanging transporta-
tion requests, and the effect of mixing different transportation planning methods. Because
we can also show some experimental results here, a section isdevoted to each.

6.1 Collaboration

The transport planning methods described in Chapter 4 do notmodify the assignment
of transportation requests to the vehicles, and also do not modify the order in which the
requests are executed. It is possible that an assignment, that might have been a good
choice in the past, becomes a problem later – either due to an incident, or a better plan
might have become available due to changes in the plans of other agents.

For this reason, acollaborativestrategy is included, in which the transport agents
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Figure 6.1: Average relative reward forMACA -RR with wait and taskheuristic on grid
networks. The two extreme values 0 (RR) and 1 (RRC) are used toset the collaboration
level of the agents.

exchange transportation requests with each other. We claimthat this will lead to a statis-
tically significant increase in the performance of the agents.

To model collaboration between a group of agents, a propertycalledcollaboration
level is added to each agent, which is a number between 0 and 1 indicating its collabo-
ration level. If this value approaches 0, the agent only wants to exchange transportation
requests to its own benefit. If it approaches 1, the agent is more aware of the system as a
whole and exchanges transportation requests with other agents if it is better for the system.
For the experiment in this section, we restricted to exchanging transportation requests one
by one, i.e., each agent tries to give each of its requests to another agent. It is also possible
that, in a certain situation, performance can be improved bygiving away two requests and
receiving one requests at the same time. Finding such request exchanges, however, will
cost much more in terms of CPU time.

Figure 6.1 shows the results of the two extreme values 0 and 1 for the collaboration
level. This clearly shows there is a big advantage letting the agents exchange transporta-
tion requests with each other. Using collaboration is always advisable. It can be used to
improve the current plans until the time is reached at which an immediate decision is to
be made (i.e., as ananytimealgorithm).
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Figure 6.2: CPU costs (in time) required byMACA -RR with wait andtaskheuristic on grid
networks. The two extreme values 0 (RR) and 1 (RRC) are used toset the collaboration
level of the agents.

Figure 6.2 shows the additional CPU time that is needed by thecollaborative version
of the MACA -RR method. Up to a certain number of transportation requests itmight
be acceptable, but with many transportation requests, it will become too slow. Notice,
however, that in such cases the method can easily be sped up bynot trying all possible
exchanges of requests.

6.1.1 Collaboration and incidents

For the experiment described in this section, the number of transportation requests is fixed
to 192 requests. Then, we varied the incident level. It can beseen in Figure 6.3 that the
performance decreases in a similar way. If the incident level reaches its maximum value,
it does not matter much which method is used, the performancereaches its minimum
value. Hence, we can see the methods come closer to each otheras the incident level
increases.

Furthermore, theMACA -RRC wait method, which performs best without incidents,
also performs best when the incident level increases. Because the performance of all
methods decreases in a similar way, there is no reason to use one method for a certain level
of incidents, while choosing another method at another incident level, when performance
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Figure 6.3: The relative reward (averaged over all requests) for a selection of planning
methods on grid networks; the incident level is increasing and the request load is fixed to
192 requests.

is considered.
Figure 6.4 shows the CPU cost (in time) of the same experiment. Here it becomes clear

that the CPU time required by theMACA -RR wait method grows rapidly if the incident
level grows. It grows significantly faster compared to the results of the previous section,
where the number of transportation requests increased along the horizontal axis.

The next section considers the effect of mixing different transport planning methods
in the same environment.

6.2 Mixed strategy

Until now it was assumed that all agents in the system appliedthe same planning method.
Combining different methods in the same setting might also influence the performance of
the agents. For example, suppose that a system with altruistic agents reaches the highest
performance encountered in experiments. But now add an equal amount of selfish agents.
Which group will have the best total performance? Combinations of planning methods
occur in many real-life systems, where one usually does not have full control over all
agents in the system. Rather, there are several parties (e.g., companies) involved that each
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Figure 6.4: The CPU costs (in time) required by the selectionof planning methods on grid
networks; the incident level is increasing and the request load is fixed to 192 requests.

control a subset of agents in the system. The possible influence of having mixed planning
methods will be investigated.

In many application domains, the system designer does not have full control over the
system. This might be the case when multiple companies are involved who do not want
to share all of their private data, or when the agents of the system designer should be able
to mingle with existing traffic. In these situations the question arises whether planning
methods that have been proven to be the most efficient in the previous sections will still be
the best performing methods. Perhaps other methods outperform these methods, because
they can handle these external traffic flows better. In this section the planning methods
are tested in this setting.

The agents are divided into groups. Agents within the same group have the same
behavior, they use the same planning method. Other groups contain agents that use other
planning methods. The relative rewards presented in Figure6.5, are not summed over
all agents in the system, but instead, it is the contributionto the system performance of
the agents per group. This means the total relative reward isactually the sum of the
contributions of all groups.

As can be seen in Figure 6.5, theMACA -RR method withwait heuristic and collab-
orative agents gains the highest performance. The orderingof planning methods did not
change compared to the situation where all agents in the system used the same planning
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method.
It is apparent that one cannot just apply one of the simple planning methods and hope

for good performance in general. Even with some noise of other agents using other plan-
ning methods, it turns out the better planning methods (MACA -RRC wait) still outperform
the other planning methods.
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AppendixA
Notation

As a guide for the notation used throughout this dissertation, the following table lists
several important used symbols. Most of the time, a standardis adopted that uses small
letters for simple variables, capital letters for sets, small Greek letters for composed vari-
ables and a calligraphic font for structures. The section column refers to the section where
the symbol is defined.

symbol meaning section
I infrastructureI � pR,ER,kinf

,ktr
,dinf

,sinf
,strq is a tuple of

resourcesR, arcsER, infrastructure resource capacity
functionkinf, transport resource capacity functionktr,
infrastructure resource distance functiondinf,
infrastructure resource speed functionsinf and transport
resource speed functionstr.

3.1.1

Rinf set of infrastructure resources. 3.1.1
Rtr set of transport resources. 3.1.1
R set of all resourcesR� RinfYRtr. 3.1.1
ER infrastructure resource connectivity relation

ER� Rinf�Rinf.
3.1.1

kinf kinfprq P N is the capacity of resourcer P Rinf. 3.1.1
ktr ktrpvq P N is the capacity of transport resourcev P Rtr.
LR a family of functions, whereLrptq P N is the current load

at infrastructure resourcer P Rinf at timet P T. For
transport resourcev P Rtr, Lvptq P N is the sum of the
volumes of the loaded packages at timet.

3.3.2

dinf dinfprq P R is the distance of resourcer P Rinf. 3.1.1

. . . (continued on next page)
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symbol meaning section
sinf sinfprq P R is the maximum possible speed at resource

r P Rinf.
str strpvq P R is the maximum possible speed at resource

v P Rtr.
Ef Ef pr, tq P r0,1s is the effective impact of incidents with

resourcer P Rat timet taking into account incidents
known at the time of computation.

ss sspvt , r iq P R is the static speed of traversing infrastructure
resourcer i P Rinf by transport resourcevt P Rtr not taking
into account incidents.

sd sdpvt , r i, tq P R is the speed of traversing infrastructure
resourcer i P Rinf by transport resourcevt P Rtr at time
t P T taking into account incidents known at the time of
computation.

T T � RYt�8,8u is the set of all possible time points. 3.1
W set of all possible time-windows (intervals of time)

W � T�T.
3.1

t a single point in timet P T. 3.1
τ a single time-windowτ PW. 3.1
τ̆ an actual time-window̆τ PW that was used for some

event, e.g., loading freight, during simulation.
lbpτq, ubpτq lowerbound and upperbound of window

τ � plbpτq,ubpτqq.
O total set of transportation requests. 3.1.2
Ov set of transportation requests assigned to transport

resourcev P Rtr.
3.1.2

o j o j � p f j ,sj ,τs
j ,d j ,τd

j ,π jq PO is a transportation request:
freight should be picked up in source locationsj P Rinf

within time-windowτs
j PW, it should be delivered in

destination locationd j P Rinf within time-windowτd
j PW,

and the reward for doing so isπ jpτ̆s
j , τ̆

d
j q P R where

τ̆s
j PW andτ̆d

j PW are the realized pick-up and delivery
time-windows respectively.

3.1.2

. . . (continued on next page)
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symbol meaning section
µ performance, if not explicitly mentioned otherwise the

relative system reward, i.e., the sum of realized pickup
and delivery rewards of all requests divided by the pickup
and delivery rewards in case the requests would have been
loaded and unloaded within the specified time-windows.

ψ CPU cost in terms of time

I set of incidents. An incidentptr , r, i,τq P I is a resource
incident, which is announced to the agents at release time
tr P T, affects infrastructure or transport resourcer P R,
has impact 0¤ i ¤ 1 and is effective during time-window
τ.

3.1.4

A set of agents. 3.3.2
Rtv routeRtv of transport resourcev P Rtr is Rtv,1, . . . ,Rtv,n. 3.3.2
Sdv scheduleSdv of transport resourcev P Rtr is

Sdv,1, . . . ,Sdv,n.
3.3.2

Q Qprq � A�W is the set of agent and time-window pairs
stored at infrastructure resourcer P Rinf

.

Lv Lvpoq P T is the time at which transport resourcev P Rtr

picks up the freight of transportation requesto POv.
3.3.2

Uv Uvpoq P T is the time at which transport resourcev P Rtr

delivers the freight of transportation requesto POv.

3.3.2

argminsPS f psq the argmin denotes an arbitrary valuemP S for which
f pmq �min

sPS
f psq holds.

argmaxsPS f psq the argmax denotes an arbitrary valuemP S for which
f pmq �max

sPS
f psq holds.

Table A.1: List of symbols.
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AppendixB
Glossary

Agent

AGV Abbreviation for Automatic Guided Vehicle or Autonomous Guided Vehicle. The
Material Handling Institute defines an Automatic Guided Vehicle as “a vehicle
equipped with automatic guided equipment, either electromagnetic or optical. Such
a vehicle is capable of following prescribed guide paths andmay be equipped for
vehicle programming and stop selection, blocking, and any other special functions
required by the system”.

Algorithm An algorithm is any well-defined computational procedure that takes some
value, or a set of values, as input and produces some value, ora set of values, as
output. An algorithm is thus a sequence of computational steps that transform the
input into the output.

Deadlock [Gridlock is a deadlock due to spill-back?]

Dependent variablesThe variables that are measured, as opposed to variables that are
varied, during an experiment. Also referred to as performance indicators or score
variables.

Gridlock Gridlock is a term describing an inability to move on a transport network. The
term originates from a situation possible in a grid network where intersections are
blocked, prohibiting vehicles from moving through the intersection or backing up
to an upstream intersection.
The term gridlock is also widely used to describe high trafficcongestion
with minimal flow (a traffic jam), whether or not a blocked gridsystem is
involved. By extension, the term has been applied to situations in other
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fields where flow is stalled by excess demand, or in which competing inter-
ests prevent progress.[copied from Wikipedia, for a visual hint, look here:
http://en.wikipedia.org/wiki/Image:New_York_City_Gridlock.jpg]

Independent variables Variables that are under control of the experimenter. Also re-
ferred to as experimental variables.

MACA Multi-Agent Context-Aware routing, see Section 4.2.2.

Makespan The makespan of a schedule refers to the total execution time. This is the time
at which the last agent finishes plan execution. Often, one attempts to minimize the
makespan, which comes down to minimizing the maximum completion time of all
agents.

Mobile entity

Resource

Transport resource



AppendixC
Introduction to agents

In 1950 Alan Turing proposed his famousTuring test, designed to provide a satisfactory
operational definition of intelligence. A human operator interrogates the computer via
a teletype. If the human cannot distinguish whether there isanother human being or a
computer at the other end of the line, the computer has passedthe test and should be
called intelligent. Shortly after the Turing test, the termartificial intelligencewas first
mentioned.

The termagentswas introduced by Putnam (1960). It is likely the idea originates from
psychology. Skinner (1953) tried to define the psychology oforganisms by solely using
input/output or stimulus/response mappings. Nowadays, there exist many definitions for
the concept agent, though none of them is generally accepted. Starting of with a weak
definition of an agent by Russell and Norvig (1995), several properties are listed here
that are generally required to be present for an entity to be called an agent. Then, some
properties are listed that for some people are necessary, for others superfluous, conditions
to call something an agent.

Definition C.1 (Agent) An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon that environment through effectors
(Russell and Norvig, 1995).

In general, it is accepted that agents must at least have the following properties:

• Autonomy – agents have the ability to act without being told what to do and when
by others.

• Persistence – agents are not products that are produced or consumed, but live a
relatively long life.

• Computational abilities – presence of non-trivial computations; this, for example,
excludes thermostats from being agents.
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Comment: - Insert image here: overview of an agent: e.g., beliefs, control, goals,
strategy, input, actions.
- The term "agent" describes a software abstraction, an idea, or a concept, similar to
OOP terms such as methods, functions, and objects. The concept of an agent provides
a convenient and powerful way to describe a complex softwareentity that is capable
of acting with a certain degree of autonomy in order to accomplish tasks on behalf of
its user. But unlike objects, which are defined in terms of methods and attributes, an
agent is defined in terms of its behavior. [Introduction to MultiAgent Systems, Michael
Woolridge].

In addition, some people require even more before they call something an agent. Some
of these properties (Graham, 2001) are:

• Mobility – the opportunity for an agent to move around.

• Veracity – agents will not knowingly communicate false information.1

• Benevolence – agents occupy the unbiased kindness to do good.

• Rationality – an agent will act in order to achieve its goals and not to prevent its
goals from being achieved.

Agents can either be humans, software or robotic agents. There are many realistic systems
that consist of a mixture of human and software agents (e.g.,intelligent user interfaces,
e-commerce, search engines).

Agent-based theory has been well studied. This has resultedin the many agent plat-
forms that are available, for example, the Java Agent Development Environment (Jade),
Java Agent-based Simulations (JAS), System for Parallel Agent Discrete Event Simula-
tion (SPADES) and many others. And also agent communicationlanguages like Knowl-
edge Query Manipulation Language (KQML) or the one used at Foundation for Intelligent
Physical Agents (FIPA).

A group of these agents can form a multi-agent system. According to Graham (2001)
the main multi-agent system specific design issues arecommunication, interaction, co-
herenceandcoordination. Multi-agent systems offer a high level of encapsulation and
abstraction. Agents can be created by different developers, as long as they can agree on
how they communicate with each other. Multi-agent systems can very well be used in the
transportation domain.

Definition C.2 (Multi-agent system) A multi-agent system is a loosely coupled system
network of problem solvers that work together to solve problems that are beyond their
individual capabilities (Durfee, 1999).

1Note that this does not include honest mistakes.
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Definition C.3 (Coordination) Coordination is the regulation of diverse elements into
an integrated and harmonious operation. Coordination means integrating or link-
ing together different parts of an organization to accomplish a collective set of tasks
(Malone and Crowston, 1994).
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AppendixD
Complexity of transport planning

When evaluating algorithms for transportation planning, apoint of reference is desired.
Without this, only empirical results can be gained for the performance of a candidate
algorithm. There might exists other ones that are much better. One way to give such a
reference point is to look at complexity theory (see Moret (1998) for an extensive survey
on complexity theory). The objective of complexity theory is to establish bounds on the
behavior of the best possible algorithm for solving a given problem — whether or not
such algorithms are known.

Within a complexity class, a problem is calledcomplete, if every other problem in the
same class can be reduced to this problem. When a problem is complete, it belongs to the
most difficult problems of that complexity class.

A well-known and often used complexity class is NP (Non-deterministic Polynomial
Time). To this class belong, for example, famous problems like Satisfiability, the Travel-
ing Salesman Problem, and the Vehicle Routing Problem. It has not been shown that any
of the problems in the class NP truly requires exponential time; however, completeness in
this class may safely be taken as strong evidence of intractability. If any complete prob-
lem would also be solvable efficiently, then all problems in the class would be solvable
efficiently.

We are now going to prove, that the decision variant of the transportation planning
problem belongs to NPC, the class of NP-complete problems. Optimization problems
can easily be changed into decision problems by setting a threshold value to the opti-
mization criterion. The question “what are the minimal costs to execute all transportation
requests?” is transformed, after adding a variableK P N, into “is there a solution to exe-
cute all transportation requests with costs less than or equal to K?”. It is obvious that the
search/optimization variant of a decision problem never iseasier than the corresponding
decision variant.

Definition D.1 Decision variant of transport planning (DTP)
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Given the model of transport planning in Section 3.1 and the performance criterion
that measures the total distance traversed by the transportresources, does there exist a
plan for the agents that execute all transportation requests with total distance traversed by
the transport resources less than or equal toK?

To prove the NP-completeness, the decision variant of a well-known NP-complete prob-
lem Shortest Hamilton Path is used. This problem is among a huge list of problems known
to be NP-Complete in the compendium of NP-complete problemsby Love (1999).

Comment: This reference might be about the non-decision variant SHP.

Definition D.2 Decision variant of Shortest Hamilton Path (DSHP)
Given an undirected and complete1 graphG� pV,Eq and a distance functiond : EÑ

R
8, does there exist a path that visits all nodes exactly once ofwhich the sum of the

distances of all edges in the path is less than or equal toK?

Theorem D.3 The decision variant of the transport planning problem (DTP) belongs to
NPC, the class of NP-complete problems. l

Comment: The following proof requires major revision.

PROOF: We have to show that DTP belongs to NP and that any other problem in NP can
be reduced to DTP.

The fact that DTP belongs to NP can easily be seen. We must be able to verify in
polynomial time that a ‘yes’-instanceYDT P of DTP has indeed costs less than or equal to
K given the plan for all the trucks. This means we only have to calculate the cost function
and confirm it is less than or equal toK.

Next we prove, that the NP-complete problem Shortest Hamilton Path (DSHP) can be
reduced to DTP. Since DSHP is NP-complete (Love, 1999), any problem in NP can be
reduced to DSHP. And if DSHP can be reduced to DTP, then any other problem can be
reduced to DTP too and DTP is NP-complete.

Figure D.1 illustrates the transformation from an arbitrary DSHP instance to a DTP
instance. Every nodevi PV in DSHP is duplicated and represented by two infrastructure
resourcessi anddi in DTP. A connection is added from infrastructure resourcesi to infras-
tructure resourcedi with distanceK�1. A transportation request must be planned from
pick-up resourcesi to delivery resourcedi . The volume of all transportation requests is
equal to the capacity of the truck. The pick-up and delivery time-windows of all trans-
portation requests are infiniter�8,8s, so these are never violated. There is one transport

1Complete graphs have a connection between each pair of nodes. Its distance might be infinite however.
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(b) Result when Figure D.1a is transformed (arcs leavingd2, d3, and
d4 are omitted for clarity).

Figure D.1: Transformation from an arbitrary Shortest Hamilton Path (DSHP) instance to
the decision variant of transport planning (DTP).

resource starting in an extra created infrastructure resourcer0, that has connections to ev-
ery pick-up resource. These connections have length 1. Every undirected edgepvi ,v jq in
DSHP is transformed into two directed connectionspsi , p jq andpd j ,siq of the same length
in DTP.

More formally, the transformation from a DSHP instancepG,d,Kq to a DTP instancepL,A,d1,T,cap, loc,O,K1q is the following:

• For every node in the DSHP graph, we create two locationssi anddi in DTP. And
for the transportation resource, we create one extra infrastructure resourcer0, so
L� SYDYtr0u, whereS� tsi : vi PVu andD� tdi : vi PVu.

• There is one transport resource, initially placed in location r0 and with a capacity
of one:Rt � rt , locprtq � r0 andcapprtq � 1.

• Each node in DSHP results in one transportation request after the transformation.
The volume of the package in this transportation request is equal to the capacity of
the truck and all time-windows are infinite (they can never beviolated):
O� tpsi ,di,capprtq, r�8,8sq : si P S^di P Du.

• The infrastructure resource connectivity relation in the DTP instance is
E � E1YE2YE3 whereE1, E2, andE3 are defined as follows:
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1. There are connections from every pick-up location to its corresponding deliv-
ery location. The travel time of these arcs isK:
E1� tpsi ,diq : si P S^di P Du
d1pa, tq � K�1 �a P E1,�t P T

2. There are connections from infrastructure resourcer to every pick-up location.
The travel time of these arcs is 1:
E2� tpr,sq : sP Su
d1pa, tq � 1 �a P E2,�t P T

3. There are connections from every delivery location to every pick-up location
of an other transportation request. The travel time of thesearcs is the same as
the distance between the corresponding locations in the DSHP instance:
E3� tpd j ,siq : si P S^d j P D^ i � ju
d1ppd j ,siq, tq � dpv j ,viq �pd j ,siq P E3,�t P T

• K1 � p|V|�1qpK�1q
The correctness of the transformation is proven by showing(a) that a yes-instance of
DSHP is always transformed into a yes-instance of DTP and(b) a no-instance of DSHP
is always transformed into a no-instance of DTP. Also,(c) the transformation must be
computable in polynomial time.

a) Suppose we have a yes-instanceYDSHP of DSHP. This means there must exist a
path pvx1,vx2,vx3, . . . ,vxnq that visits alln nodes and has costs less than or equal
to K. After the transformation, the transport resource can follow the same pathpr0,sx1,dx1,sx2,dx2, . . . ,sxn,dxnq. This path will execute all transportation requests,
because it contains all pick-up and delivery locations (andthe capacity of the trans-
port resource is no problem, since never more than one transportation request is
loaded). The truck will not violate time-windows, because we only have infinite
time-windows. The costs are 1 for going to the first pick-up location,K� 1 for
traveling from each pick-up location to its corresponding delivery location andR
for the rest of the plan. The latter costsR are exactly the costs of instanceYDSHP

and, sinceYDSHP is a yes-instance of SHP, we have thatR¤ K. The total costs for
the agent are

1� |O|pK�1q�R¤1� |O|pK�1q�K� |V|pK�1q�K�1� p|V|�1qpK�1q� K1
And therefore, the instance of DTP is also a yes-instance.
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b) Suppose the transformed instanceRpIq is a yes-instance of DTP. This means that
there is a plan with costs less than or equal toK1. In such a plan, all arcs of length
K�1 are traversed, because all transportation requests must be executed. Thus we
have

CpPlanptqq ¤ K1 � p|V|�1qpK�1q
CpPlanptqq ¥ |V|pK�1q

Combining these equations shows that the truck hasK�1 left to visit all pick-up
locations. The first action of the truck is to drive from its initial position to the first
pickup, this arc has costs 1. Note that for visiting all otherpick-up locations, an arc
is used that has the same costs as an edge in the DSHP instance.Since we stated
that RpIq is a yes-instance of DTP, there is a path that visits all pick-up locations
and has costs less than or equal toK. This path cannot visit any location more than
once, because then, for somei, an arcpsi ,diq must be traveled more than once with
costsK�1. The path corresponds to a Hamilton path in DSHP with costs less than
or equal toK. And therefore, if instanceRpIq is a yes-instance of DTP, then instance
I is a yes-instance of DSHP.

c) It is easy to see that this transformation can be done in polynomial time. One
transport resource is created and 2|V|� 1 infrastructure resources. There are|V|

connections from the initial position of the transport resource to the pick-up loca-
tions,|V| connections from the pick-up to the corresponding deliverylocations and
2|E| additional (directed) connections (i.e., the connectionsin the DSHP-instance).
Then,|V| transportation requests are created and the valueK1 is computed (inOp1q
time). The complete transformation can be done inOp|V|� |E|q time. �

The decision variant of transport planning (DTP) and thus also the transport planning
problem are NP-complete.
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AppendixE
Transport planning simulator -
TRAPLAS

Intro ... Before that several important properties of the simulation tool are described. We
start with the Pamela run-time library that can be viewed as the simulation kernel. Pamela
supports light-weight processes and semaphores and here wedescribe how that can be
used for communication between the agents and enforcing capacity constraints on the
transport network.

Comment: - Some TraplasViz screenshots.

E.1 Pamela run-time library

TRAPLAS is based on the Pamela run-time library [cite: technical report AvG].
The Pamela run-time library provides a concurrent, general-purpose performance sim-

ulation interface, based on the procedure-oriented (“P/V-style”) paradigm [cite: Andrews
and Schneider, “Concepts and notations for concurrent programming”].

The library contains two important data types,(i) processes and(ii) semaphores.
Processes are light-weight threads with their own local time stamp, in which the global

simulation time is stored either at which it has been suspended (in the past) or at which it is
resumed (in the future). At any time, only one process can berunning. All other processes
are eitherrunnable– i.e., scheduled to run at their local time stamp – or they areblocked
– i.e., waiting on a semaphore until another process lifts this block by executing apam_V
operation on this semaphore. Pamela processes are scheduled non-preemptively. This
means that execution of a process continues until it voluntarily releases control.

Several important function in this library with respect to the processes and semaphores
are listed here together with their description.
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data.credit� 2
msg1 msg2

room.credit� 3

Figure E.1: Message queue with buffer size 5.

pam_time() Get the current global simulation time.

pam_delay(s) Calling process delayss seconds. Control is (in general) given to an-
other process.

pam_alloc() . . .

pam_P(sema) If semaphoresemadoes not have sufficient credit, the calling process is
blocked until another process lifts the semaphore’s credit. If the semaphore does
have enough credit, it is decreased and the calling process remains the running
process.

pam_V(sema) The credit of semaphoresemais increased. The calling process always
remains running.

pam_T(sema) This function returns (tests) the current credit of semaphoresema. If it is
negative, it indicates the number of processes that are blocked on this semaphore.

pam_fork() . . .

pam_exit() . . .

pam_quit() . . .

E.2 Communication

Comment: Type of simulation (event-based, about time, etc., discrete event simulation
mechanism)
- H&N scheduling, event graph (using messages) for startingreplanning rounds.
Maybe also planning by agents in general (e.g., message flow diagrams)
- deadlock (cycle) detection: Tortoise and Hare (optimal complexity).
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Communication functions.

1: procedure SEND(Messagem)
2: pam_P(room)
3: push(m)
4: pam_V(data)
5: end procedure

6: procedure RECEIVE

7: pam_P(data)
8: pop(m)
9: pam_V(room)

10: return m
11: end procedure

12: procedure RECEIVE_IMMEDIATELY

13: if pam_T(data) > 0then
14: return Receive()
15: else
16: return NO_MSG_AVAILABLE
17: end if
18: end procedure

E.2.0.1 Execution

The same execution method regardless of what planning method is chosen (good safety
check).

Capacity of infrastructure resources safeguarded by semaphores.

A cycle detector watches for deadlocks. Two-cycles are not allowed. Simultaneous
exchanges are.

Comment: What about too many swaps?

E.2.0.2 Statistics

MEASURE(variable, value, save_to_log) [lunchlezing]

Number of samples, Minimum, Maximum, Sum, Average, Variance, Skewness (sym-
metry around mean), Kurtosis (peakedness/flatness)

Last four (four moments) can be used to determine the distribution using Generalized
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Traveling from infrastructure resourcer1 to resourcer2.

1: procedure DRIVE(r1, r2)
2: pam_P(cap(r2))
3: arbitrated_pam_V(cap(r1))
4: pam_delay(drive_cost)
5: end procedure

6: procedure ARBITRATED_PAM_V(sema)
7: pam_V(sema)
8: Reschedule processes blocked forsema
9: end procedure

Lambda Distribution (GLD).

Mr � 1
N

Ņ

i�1

pXiqr (E.1)

E.3 Distributed ASCI Supercomputer (DAS-3)
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Figure E.2: The DAS-3 cluster at the Delft University of Technology consists of 68 dual-
CPU 2.4 GHz AMD Opteron DP 250 compute nodes, each having 4 GB of memory and
250 GB of local HD space. The cluster head node consists of a dual-CPU/dual-core 2.4
GHz AMD Opteron DP 280 with 4 GB of main memory and an additional RAID6 storage
system of 5 TB. The cluster is equipped with 1 and 10 Gigabit/sEthernet.
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AppendixF
Transport network topologies

This section describes different transport network topologies, which occur frequently in
practice. For all of the topologies exist algorithms that can create random instances, which
are used for the experiments in Chapter 5 to generate the required transport networks. But
first, several transport network properties are listed, by which the topologies differ. The
performance of these different topologies with corresponding different network properties
will be tested and compared in Chapter 5; it is likely not onlythe performance in normal
circumstances, but also in case there are incidents will be very different. For example, a
network with multiple alternative routes from a source to a destination location is likely
to be less influenced by incidents, because agents can take a detour if needed.

The network properties characterizing the different topologies are:

• diameter: the longest path in the network,

• options: the average number of equidistant alternative routes between any pair of
locations,

• average path length,

• clustering coefficient: how many of a location’s connections are also connection to
each other?

• betweenness: degree the shortest path between two other locations is through this
location.

Regarding the clustering coefficient property, if a location hasn connections, there can
be at mostnpn�1q{2 connections between the connected locations. If there arein fact m
connections between those connected locations, the clustering coefficientC is defined as
C� 2m{npn�1q. Hence, the clustering coefficient is always 0¤C¤ 1. It is 1 for fully-
connected networks;it is approximately 1{|Rin f | for random networks, but it has a high
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Figure F.1: Example of the random topology.

variability. The betweennees is measured by computing all shortest paths between all
pairs of locations and incrementing counters for intermediate locations on these shortest
paths.

The different topologies are the random, tree, grid, small-world, and scale-free topolo-
gies, which will be described in turn in this section.

F.0.1 Random topology

Although it was stated before in this thesis that it is not sufficient to look at random
transport networks – one would not have enough time to process a representative set of
transport networks in experiments, it is still an importanttopology to consider.

Three different ways can be adopted to create a random transport network, these are:

1. create a spanning tree, then randomly add more edges,

2. create a fully-connected network, then randomly remove edges,

3. create an edge for each of the
�n

2

�
pairs of locations with a given probability.

An advantage of the first method, which will be used in Chapter5, is that the resulting
transport network is always connected, i.e., it is possibleto traverse from any given loca-
tion to any other location. If a transport network would not be connected, one would first
have to divide the problem instance into smaller instances,taking into account that some
transportation requests simply cannot be executed.
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Figure F.2: Example of the grid topology with some diagonals.

Comment: Gregory Provan (from Cork), who among other things worked onauto-
mated model generators, claimed that random networks can well capture generic struc-
ture of a complex system, but are not very good at detailed structure. He also mentions
alternative approaches to changing to random Small-World structures.
Also, he claims that random networksare very good estimations in the domain of
model based diagnosed, and probably also for many other domains.
Gregory claims that all complex systems have(i) short distance between any two nodes
and(ii) high clustering (these are power law properties).
Diagnosis is especially difficult when subcomponents are highly clustered; graph col-
oring problems are difficult when neighboring lands have many connections (up to the
point the instance is uncolorable).

F.0.2 Tree topology

A tree network is actualy constructed by the step of the first method to generate a network
with random topolgoy of the previous section. In this step, arandom spanning tree is
constructed.

The interesting thing about a tree network is that there is exactly one shortest path be-
tween any source and destination location. This makes (re-)routing computations trivial.
The downside of this, is that tree networks are very sensitive to incidents, as the agents
are not able to take detours.

With respect to the network properties, the options property is 1 – its smallest possible
value.

F.0.3 Grid topology

Figure F.2 shows an example of a grid network. A distinction is made between a regular
grid network, having only horizontal and vertical connections, and grid networks where
some (at most two per square) diagonals are also allowed. Thenon-regular diagonal
connections are introduced to be able to make a more fair comparison between different
network topologies. For example, in Chapter 5, it is attempted to compare networks of
different topologies that have an equal number of locationsand connections.

Regularn� n-grid networks have a diameter ofn�n. The number of equidistance
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Figure F.3: Example of the small-world topology.

Figure F.4: Example of the scale-free topology (taken from Wikipedia).

shortest paths grows while source and destination are further apart, and is quite big (op-
tions is large).

F.0.4 Small-world topology

The characteristic property of small-world networks is that the average path length be-
tween locations grows logarithmic with the number of locations in the network. The
type of network is also popular in social networks. Althoughthe earth population grows
rapidly, it is conjectured that within seven handshakes each pair of persons know each
other.

In a small-world network, each location is connected to nearby locations. And, only
sometimes, a node is connected to some node far away. Such a network is usually created
by starting with a circle of nodes. Then, each node is connected to thek{2 nearest neigh-
bors to the left, and itsk{2 nearest neighbors to the right (in Figure F.3k� 4 is used).
Subsequently, with a small probability 0  p! 1 each connection is rerouted to a different
node. Ifp approaches 1 the resulting network is of the random topology.

Considering the network properties given at the start of this section, the clustering
coefficient remains high, while the average path length grows slowly (logaritmically).
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(a) Courtesy of IE&ICT University of
Twente.

(b) Screenshot of the Sealand terminal in AGVSim.

Figure F.5: The underground logistic system connecting Aalsmeer, Schiphol and Hoofd-
dorp and the Sealand terminal of Europe Container Terminals(ECT). The latter has a
stocking yard at the top and quay cranes (un)loading ships atthe bottom, the AGVs drive
in unidirectional circles.

F.0.5 Scale-free topology

As an example of a scale-free topology, compare a roadmap to an airline routing map. On
the roadmap, one can see each city connected to a highway withnearby cities connected.
On the airline routing map, however, one usually sees that big airports are connected to
many other airports.

F.0.6 Fully-connected topology

If the path between source and destination is shorter, the probability of malfunctioning
resources and conflicts with other agents is smaller. In a fully-connected network, there
are so many connections the agents can always take the directconnection while traveling
and hence have maximum opportunity to avoid malfunctioningresources and conflicts
with other agents (whereas cities were connected to only oneor a few highways).

F.0.7 Realistic topologies

Another example of a realistic topology that is used in the experiments of Chapter 5 is the
Schiphol airport network that is presented in Figure 5.22.

Not only for the transport networks it was important to look at different topologies,
but this also holds for incidents. In the next section several incident models are described,
which are commonly used to model the occurrence of incidentsin real-life situations.
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AppendixG

Incident models

In reliability engineering, it is common to model the so-called hazard rate function by one
of the functions illustrated in Figure G.1. On the left, a hazard rate curve is shown known
as thebathtub,due to its shape. The time intervalrt0, t1s is referred to asinfant mortality,
usually due to production failures. Then comes the normal life during rt1, t2s with an
almost constant failure rate. And, finally, after timet2 the failure rate increases again
as the product exceeds its design lifetime (wearoutfailures). The bathtub curve is often
used to model the failure rate of electronic components; thefailure rate for mechanical
components might very well follow a different curve.

On the right, a negative exponential curve is shown. This failure rate function is ever
decreasing and is an easy-to-use failure rate function whenonly the number of failures
per time unit is known from practice and the failure rate is independent of age.

The mean-time-between-failure (MTBF) that one often encounters in literature, is the
average time between failures. When the failure rate is constant, the MTBF is simply the
reciprocal of the failure rate.
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Figure G.1: Hazard rate curves.
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G.0.8 Exponential distribution

The exponential distribution is the continuous analog of the discrete geometric distribu-
tion. It is used to model Poisson processes (Poisson, 1837).The exponential distribution
can be used as a good approximation model to estimate the timeat which a next incident
occurs. In queuing theory, the inter-arrival times (i.e., the times between customers enter-
ing a system) are often modeled with random variables that are exponentially distributed.
The exponential distribution can be a good choice for modeling the arrival time of inci-
dents. However, note that the right choice for a distribution eventually depends on the
problem at hand and can best be determined by examining real data.

The probability density functionf ptq of an exponentially distributed random variable
X, where constantλ denotes the average number of failures per time unit, and thecumu-
lative distributionFptq are defined as:

f ptq � "
λe�λ t

0
0¤ t
t   0, and

Fptq � "
1�e�λ t

0
0¤ t
t   0.

The exponential distribution is used in the model to generate time-windows for in-
cidents. The start of this time-window is called thefailure timeand the length of this
time-window is referred to as therepair timeof the resource. The failure times of all
incidents are assumed to be independent of each other. This means it is assumed that a
resource performs like a new one after it has been repaired. For some applications that
assumption is not valid, in which more MTBF theory can be applied, for example, by
increasing theλ value dynamically in situations where it is more and more likely for a
resource to malfunction the more times this resource has been malfunctioning in its recent
history.

The expected failure time of a resource and its variance for random variableX that
has an exponential distribution are given by

ErXs � 1
λ
, and

VarrXs � 1
λ 2 .

The exponential distribution is said to bememoryless, i.e., the probability that no
incident will occur within the next ten minutes, given no incident occurred in the past
half hour, is equal to the probability, for example, that thefirst incident occurred after ten
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t2 timet1

Figure G.2: Generating arrival times of incidents by selecting adjacent time intervals with
probability 1{λ . The width of the boxes is the repair time. This process is repeated for
each resource.

minutes. Formally,PpX ¡ 40 | X ¡ 30q � PpX ¡ 10q.
The importance of this method is that it avoids discretization that could lead to unde-

sired artifacts. These undesired artifacts can occur, for instance, when one uses running
intervals (with length equal to the repair time) and then, for all resources, with probabil-
ity 1{λ generate an incident during this time-window. The problem with this approach,
sketched in Figure G.2, is that, at different infrastructure resources, incidents often occur
at exactly the same times, which is simply not so realistic and an unnecessary simplifica-
tion.

In real world scenarios, the constraint that there areλ failures per time unit is rarely
satisfied. That, however, does not render this approach useless. One approach is to focus
on a more specific time interval, such as peak hours versus quiet hours, where the con-
straint is more or less (locally) satisfied. Another approach is to combine several incident
models with differentλ values together.
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AppendixH
Planning Domain Definition Language
(PDDL)

PDDL – the Planning Domain Definition Language, which can be seen as successor to
STRIPS1, has set a standard language for planning domains used by many planning tools.
The language is particularly interesting to the setting of this thesis, because in some com-
petitions benchmarks were generated that contained problem instances for logistic do-
mains.

The original version of the language (PDDL 1.7) was developed by Drew McDermott,
with the help of the 1998 Planning Competition committee. Fahiem Bacchus selected a
subset of the original language as the language for the 2000 competition. To result in the
2002 version (PDDL 2.1) Maria Fox and Derek Long extended thelanguage with time
and objective functions. In 2004 (PDDL 2.2) derived predicates and timed initial literals
were added. The most recent competition known at the time of this writing is PDDL 3.0,
used in the 2006 competition (Gerevini and Long, 2006). In this version first suggestions
for constraints and preferences, expressed in a restrictedtemporal logic, were added.

Figure H.1 gives an example of the planning domain definitionlanguage, taken from
the fifth International Planning Competition (IPC 2006) hosted at the International Con-
ference on Automated Planning and Scheduling in 2006. How tointerpret the different
building blocks of this example is described in Yannis Dimopolus and Saetti (2006). Af-
ter specifying the name of the problem instance and the domain it starts with listing the
objects in(:objects), several trucks, packages, locations, and truck areas. Truck ar-
eas represent the loading space of the trucks. Subsequently, in (:init), the initial state
is given. (free a1 truck1) denotes that truck areaa1 of trucktruck1 is empty
and(closer a1 a2) means that truck areaa1 is closer to the door of the truck than

1STRIPS (Stanford Research Institute Problem Solver) is an automated planner invented by Richard
Fikes and Nils Nilsson in 1971. The same name was later used torefer to the formal language of the inputs
to this planner.
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truck areaa2 and, hence, truck areaa1must be empty if something is loaded or unloaded
into truck areaa2.

The goal state(:goal) specifies that the three packages must be delivered to the
correct destination locations and then in(:constraints) the trajectory constraints
are specified that should be valid all the way (while the goal state should be met at the
end). Inside the(:constraints) tag there are several preferences. Those are soft
constraints that are desired to be satisfied, but not necessarily. The objective function,
specified in(:metric) uses these, multiplied to a number indicating the priority of the
particular preference.

In the specification of the domainTrucks-ComplexPreferences, which is
omitted here, it is specified that there are four actions:load, unload, drive and
deliver. Here it is also specified that a load or unload action can onlybe performed in
a truck area if all truck areas closer to the door of the truck are empty.

On the homepage of McDermott it is stated that Opt – Ontology with Polymorphic
Types – is a successor to PDDL. Opt includes durative actions, autonomous processes,
a completely revised hierarchical planning notation and a more robust type system. Mc-
Dermott further promised that soon Opt will include all features that PDDL 3.0 has.
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(define (problem truck-1)
(:domain Trucks-ComplexPreferences)
(:objects (:constraints (and
truck1 - truck (forall (?p - package ?t -

truck)
package1 - package (preference p1A (always
package2 - package (forall (?a - truckarea)
package3 - package (imply (in ?p ?t ?a)
l1 - location (closer ?a a2) )))))
l2 - location
l3 - location (preference p1B

(sometime-before
a1 - truckarea (delivered package2 l2)
a2 - truckarea) (delivered package1 l1)))

(:init (preference p4A (within 919.7
(at truck1 l2) (delivered package1 l1)))
(free a1 truck1)
(free a2 truck1) (preference p4B (within 919.7
(closer a1 a2) (delivered package2 l2)))
(at package1 l3)
(at package2 l3) (preference p4C (within 1813.7
(at package3 l1) (delivered package3 l2)))
(connected l1 l2)
(connected l1 l3) (forall (?p - package)
(connected l2 l1) (preference p2A (at-most-once
(connected l2 l3) (exists
(connected l3 l1) (?t - truck ?a - truckarea)
(connected l3 l2) (in ?p ?t ?a)))))))
(= (drive-time l1 l2) 406.3)
(= (drive-time l1 l3) 73.1) (:metric minimize (+
(= (drive-time l2 l1) 406.3) (* 1 (is-violated p1A))
(= (drive-time l2 l3) 356.8) (* 1 (is-violated p1B))
(= (drive-time l3 l1) 73.1) (* 2 (is-violated p2A))
(= (drive-time l3 l2) 356.8)) (* 4 (is-violated p4A))

(* 4 (is-violated p4B))
(:goal (and (* 4 (is-violated p4C))))
(delivered package1 l1)
(delivered package2 l2) )
(delivered package3 l2)))

Figure H.1: PDDL (version 3.0) exampletruck-1 from Truck domain (IPC 2006) with
complex preferences. Preferences are specified within the(:constraints) tag and the
objective function within the(:metric) tag.
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Appendix I
The test set

The test set is a set of problem instances designed for the experiments. To compare, for
example, two different planning methods, those planning methods can be run for each
problem instance within the test set. A problem instance consists of a transport network,
a set of operational agents, a set of transportation requests, and a model (or a set of)
incidents. How these individual components are chosen is described in this section. At
the end, attention is paid to the relevance of the test set.

I.1 Experimental setting

In this section information is provided that is indispensable to anyone who desires to
reproduce the experiments presented in the sequel of this chapter. Reproducibility

Each experiment consists of a set of simulation runs with TRAPLAS. These individual
runs differ in several ways. The selected problem instance consists of a set of transporta-
tion agents, a set of tasks, the transport network, and the incident model. The chosen
operational planning method is part of the definition of an agent in the problem instance.
A problem instance is a single element from the test set, which is described in the subse-
quent section.

Furthermore, simulation runs are affected by environmental settings. TRAPLAS,
which of course is based on the model described in Chapter 3, is a highly parametrized
simulation tool.

Take over If take over is not allowed then all drive actions of transport resources com-
plete in order. Hence, without take over, faster transport resources sometimes have
to wait for slower transport resources. In these experiments, take over is allowed.

Arbiter policy If agents use faulty planning methods, or plans are renderedinfeasible
due to incidents, there is always a fallback to simple resource usage rules. In
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these experiments first-in-first-out is chosen as arbiter policy, meaning transport
resources enter a resource in the same order as they announced their desire to enter
the resource.

Shortest path planning There are many shortest-path algorithms. Mostly, they are guar-
anteed to produce the optimal shortest path and in that case they only differ in com-
putation time. In case reservations are considered, however, the situation changes.
The complexity increases, which can intuitively be understood by recognizing that
now it matters at what time a resource is entered and optimal paths can now contain
cycles.

Accepted penalty The maximum negative change in individual performance for an agent
to still accept the task. This value might also be negative. In these experiments
a value of zero has been used, tasks are not accepted by the agents during task
(re)allocation if the difference in performance (given theselected performance in-
dicator) between the new plan and the old plan is positive.

Task limit The maximum number of transportation requests that can simultaneously be
assigned to an agent. In these experiments, the task limit isset to five. This is done
to avoid that a single agent can disturb the system by accepting all tasks, and to
speed up some methods (e.g., the insertion method for task allocation is quadratic
in the plan length of an agent).

Seed valueIf two simulation runs use the same seed value for the random generator,
then each time a random number is asked for the same number is generated. In
these experiments, a random seed value is chosen each time, among other things
based on the system clock. This option allows for exact reproducible simulation
runs.

I.2 Network topologies

In Section?? several network topologies have been described. Those included random
(but connected) networks, which can in fact represent any ofthe other network types.
However, because only a small finite number of simulation runs can be done within ac-
ceptable time, it is not a good idea to use random networks only. Namely, a large number
of networks would be required to have a representative set oftransport networks in the test
set. Therefore, networks are generated of each network topology – including the random
topology (in fact, even three different methods were used togenerate random topologies).

To make the comparison as accurate as possible, where possible the above generated
networks all have the same number of infrastructure resources and arcs. Of course, a
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regularn� n grid network has exactly 2npn� 1q arcs. That is why diagonal arcs have
been introduced. For each grid cell (four resources that arein a cycle) one diagonal
(out of two possibilities) might be added, adding a maximum of pn�1q2 additional arcs.
This (limited) flexibility to select the desired number of arcs for a grid network makes it
possible to create a network that has the same number of arcs as a Small-World network. A
Small-World network withn2 infrastructure resources (where each resource is connected
to its neighbors and the neighbors of its neighbors, i.e.,k � 4) has 2n2 arcs and 3n2�
4n� 1¡ 2n2 for n¡ 3. On the other hand, for tree networks, the number of edges is
alwaysn�1, so comparison must still be done carefully. Besides thesesynthetic transport
networks, the problem instances also contain some networksinspired by real-life, for
instance, the Sealand terminal, the underground logistic system (OLS), and a network
resembling the taxiways at Schiphol Airport have been included.

When the set of infrastructure resources and the set of connecting arcs is known, the
properties of each infrastructure resource must be considered. Among these are the ca-
pacities of the infrastructure resources. In Section 3.2.1it was assumed that all transport
resources initially start in a resource with sufficient capacity. This is done for simplifica-
tion. If it would have been allowed, transport resources might have to move to a resource
with sufficient capacity in order to give way to other transport resources, or else, in the
worst case, the system is prone to deadlocks. The more resources there are with sufficient
capacity, the more easy it is for transport resources to passeach other. Again, for an accu-
rate comparison it is desired to have about the same number ofresources with sufficient
capacity for the different transport networks. Either these resources were chosen at ran-
dom or the endpoints of the diameter were chosen (then, the endpoints of the next longest
path, etc). These resources are also used as pick-up and delivery resources, such that, if
a transport resource finishes a task by unloading at the destination, there is no need for
transport resources to route to a resource with sufficient capacity.

Finally, the maximum allowed driving speed and the distanceare to be specified.
These are of course related. In the experiments the maximum allowed driving speed was
set to 1, and the distance was drawn from a normal distribution with meanµ � 10 and
standard deviationσ � 1.

I.3 Agent behavior

Planning is considered part of the behavior of an agent throughout this thesis. This means
the methods used for task allocation and the planning methods used to compute a route
and a schedule for the plans of the agents are considered partof its behavior.

Two different approaches are used to assign tasks to agents.The first approach is
vehicle-oriented, the secondtask-oriented. In the vehicle oriented approach, new tasks are
announced by the customers by putting them on a blackboard (or some other information
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system, the idea is just that the agents are informed about this new task). Any agent,
who happens to be looking for a new task, can check this blackboard and retrieve tasks
from it. At the moment an agent pulls a task off the blackboard, it is assigned to this
agent and others cannot see it anymore. This operation is atomic to avoid the situation
where multiple agents think they have been assigned the sametask. Incoming tasks are
assigned one by one to the agents sequentially, while the agents consider adding new tasks
in parallel.

For thetask-orientedtask allocation, a well-known auctioning protocol, the Vickrey
auction, is used. An auction is held for each incoming transportation request. Again,
this is done one by one sequentially. Each agent computes a bid for this transportation
request and it will be assigned to the agent with the highest bid. This agent has the pay
the amount of the second highest bid. It can be proven for thisauctioning protocol that
the best strategy for an agent is to bid his true value. It could very well be that agents
are more interested in some tasks given that they will also get some other tasks. In other
words, what an agents wants to bid for a certain task can depend on whether it wins the
auctioning for some other task. This dependency between auctions is taken into account
in the field of combinatorial auctions (Sandholm, 2002), which is beyond the scope of this
thesis.

Furthermore, three different types ofacceptanceof new tasks are used. There are
agents that only accept positive reward for the transportation tasks they execute. They
will not accept tasks to have a negative reward when they are assigned to the agent nor
will they ever accept a situation where it is expected the task will lead to a negative reward.
If such a situation occurs, e.g., due to incidents, the transportation task will be dropped
immediately. The second type of agents are a little less self-interested. They also do not
accept transportation tasks with a negative reward, thoughthey will continue to execute
tasks that lead to a negative reward later, possibly due to incidents. Then, there is a third
category consisting of agents that accept everything. These are most useful in situations
where each task must be executed. Transportation tasks can be assigned to those agents
even if it is known in advance that the agent will receive a negative reward even if no
incidents at all would occur.

Unless explicitly mentioned the experiments are performedwith 32 agents. Each of
these agents uses the same planning method, which is varied over different simulation
runs. TRAPLAS is able to keep the rest of the environment completely identical, such
that the results can be compared to each other. Additionally, mixed strategy experiments
are performed. In these experiments, the 32 agents are divided into four groups of eight
agents. Here, the members of the same group use the same planning method. This is done
to investigate whether there are dependencies between the different planning methods and
to see whether it is true that the best performing planning methods are still performing best
in case there are other agents in the system that use other planning methods.
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I.4 Transportation requests

For each network topology, ten different instances are created for 32 transport resources
with five tasks per agent (request load of 160). Then, instances are merged together to
create a higher request load, as is described later in this section.

Algorithm ?? describes a way to generate problem instances, such that(i) optimal
system welfare gained by executing a set of optimal plans is known and(ii) the instances
look reasonably realistic (e.g., there must not be a huge amount of idle time in the optimal
plans or other trivialities).

To compare the planning methods to the best possible performance, best possible per-
formance must be known. That is not possible for sufficientlylarge arbitrary problem
instances due to the complexity of the problem. The following technique is used to over-
come this problem: instead of computing the optimal performance for a problem instance
(which can only be estimated, and not even precisely), a random plan for each agent is
generated. Subsequently, this is used to compute a problem instance. The interesting part
is that it is ensured that the generated plan is an optimal plan with respect to the generated
problem instance. This is always the case if (but not only if)the following conditions are
true:

1. the route driven by the agent from pick-up to delivery location has minimal costs.
There does not exist a faster path and there is no waiting timein the plan,

2. the realized loading and unloading time-windows maximize the rewards of the
transportation requests,

3. an agent being idle has zero cost.

Because the transport resources move along shortest paths from source to destination
of their transportation requests and they gain maximum reward for the execution of the
request, these plans are likely to be optimal. The only exception is when the agents have
a loading capacity greater than one and by combining transportation requests they can
decrease their driving costs more than the rewards decreasedue to violation of the time-
windows of the transportation request. The latter is not thecase in these experiments,
because the loading capacities of the agents are set to one.

The task-generating agents select a new destination resource for each task at random
in Algorithm ??. An unfortunate choice here could lead to more idle time in the plans of
the agents, hence fewer transportation requests per time unit. There is room for some im-
provement by considering several alternative destinationresources. In Figure I.1 the idle
times of the test set are shown, and those instances are considered well enough already.

Setting the task limit or time limit to a greater value increases the number of generated
transportation requests, but it does not increase the request load computed as the number
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Agents generating transportation requests.

1: procedure GENERATEREQUESTS

2: Simulation timet � t0.
3: Generate a new requesto j with as source the current infrastructure resource.
4: while both time-limit and task-limit not yet reacheddo
5: Set loading time-window toτs

j � rt, t� loadingtimepo jqs
6: Compute the setD of potential delivery resources, agent must be able to drive

there without any delay
7: if D�∅ then
8: Pick a random destinationd from D and place the agent there.
9: t � t� loadingtimepo jq�drivetimepo jq

10: Set unloading time-window toτd
j � rt, t�unloadingtimepo jqs

11: t � t�unloadingtimepo jq
12: Add requesto j to the set of transportation requests.
13: Generate a new requesto j with as source the current infrastructure re-

source.
14: else
15: t � t � tc, wheretc is the minimal non-zero duration of all conflicts en-

countered in Line 6 (agent is idletc time units).
16: end if
17: end while
18: end procedure

of transportation requests per time unit. Therefore, an additional technique is used to
create problem instances of a higher request load. This is done by merging transportation
request files. An upper-bound on the optimal performance of the merged instance is the
sum of (upper-bounds of) the optimal performances of the individual instances.

Reward functions The reward function, which can be different for each separate trans-
portation request, specifies the reward the agent gets for successfully executing the trans-
portation request. The reward for a transportation requestis the sum of the reward for
loading and the reward for unloading the freight.

The reward typically is maximal when the loading or unloading event takes place
within the specified time-window. When the loading or unloading event is too late, the
reward either is zero immediately, or decreases according to some function. Furthermore,
if the loading or unloading event is too early, there might also be a drop in reward. For ex-
ample, when trucks arrive too early to deliver their goods ata supermarket, they consume
parking space close to the supermarket that temporarily cannot be used by other trucks.

In case a function is used that has a global maximum (e.g., a horizontally asymp-
totic function), there exists an easy upper-bound on the total reward that is the sum
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Figure I.1: Idle times in the optimal plans for ten arbitrarytransport networks for each
topology.

of these global maxima of each transportation request. Examples of such reward func-
tions are a constant reward (e.g., zero outside the desired time-windows and a constant
within the time-windows), a summed arctan (too late resultsin decreasing reward, but
never more than the horizontal asymptote), linear distanceoutside the time-windows,
or the gamma distribution. The latter, illustrated in Figure I.2, is used in the exper-
iments. In case loading or unloading starts too early at timet   lowerboundpτq and
too early is considered of equal importance as too late, thistime can be transformed to
upperboundpτq�plowerboundpτq� tq to compute the reward.

I.5 Incidents

An incidentpr,τ, iq is defined by specifying aresource r, either a transport resourcer PRtr

or an infrastructure resourcer P Rin f , an impact factor 0¤ i ¤ 1, for which p1� iq is
multiplied with the allowed speed at or maximum speed of the resource, atime-window
τ PW during which the incident is in effect and itsrelease time, the time at which the
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incident is known to the system. If the release time is smaller than the start of the time-
window, this means the system knows in advance the incident will take place; the release
time is never greater than the start of the time-window.

As already stated in Section 3.1.4, the effective time-windows of incidents are often
modeled using the Mean-time-between-failure (MBTF) approach. As an example, let us
model a resource that malfunctions 10% of the time, i.e.,p� 0.1, with an average repair
time of 3. Recall the probability density functionf ptq and cumulative distributionFptq
that belong to the exponential distribution, see Section 3.1.4.

This means there is on average one failure in thirty time units, i.e., the average number
of failures per time unitλ equals 1

30.
The total area below the probability density function is, ofcourse, equal to 1. What

we want is to compute the next start time for an incident according to the probability
density function. Therefore, we start by taking a list of random numbers inr0,1q, say
N � p0.254,0.928,0.498,0.529,0.139q. Now let each random number correspond to the
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fraction of the total area below the probability density function before the start time of
the incident. To compute the starting timex for all random numbersn P N the following
equation is used. » x

0
f ptqdt� n �

Fpxq�Fp0q � n �
1�e�λx� n �

x� �lnp1�nq
λ

λ � 0^n  1

This yieldsL� p8.791,78.933,20.675,22.587,4.490q. List L now denotes subsequent
times between intervals. Finally, from this list we can easily compute the time-windows
of the incidents: these arer8.791,11.791q, r90.724,93.724q, r114.398,117.398q,r139.985,142.985q, and r147.475,150.475q respectively. Five incidents of length 3 in
approximately 150 time units indeed corresponds to a resource malfunctioning 10% of
time. Note that the repair time does not have to be constant over all incidents.

To measure the incident level the following function, that sums the product of impact
and duration of each incidents, is used:

incident level� ¸pr,τ,iqPI i � �ubpτq� lbpτq�.
For the experiments the failure probability was varied from0 to 0.2 (20%) and the

repair time was drawn from normal distribution withµ � 400 andσ � 50. The reason
behind this was previous research of Maza and Castagna (2005), and some tests done to
repeat this. Samia and Castagna report that with frequent incidents that have a short repair
time there are no significant differences between their different planning methods. This
also holds for the methods in this thesis. They claim that when the failures are frequent
and short, they are mutually compensated. The methods in this thesis that consider rerout-
ing the vehicle will not find much of an improvement as the vehicle will also be bothered
by incidents along all alternative routes.

I.6 Relevance

The set of problem instances that are used for the experiments throughout this thesis is
synthetic. Although attempts were made to have the problem set resemble reality as much
as possible concerning many aspects, this possibility, or simply the data, was not always
available. Nevertheless, it is conjectured that the set of problem instances is realistic
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Figure I.4: Example of generating incidents. The dots indicate the release times of the
incidents (i.e., the time it is known to the agents). This data is generated like described
in this section, with failure probability 0.1 for all 32 transport resources, but with a repair
time (and time known in advance) drawn from a normal distribution.
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enough to be of practical importance.
To start with, the transport networks include some realistic instances. There is the

network resembling the Sealand terminal, the underground logistic system (OLS), and
the Schiphol airport network. For the rest of the transport networks, an attempt was
made to generate many networks of several well-known structures (grid networks, small-
world networks, etc.), but also to generate many random networks to see the effect of the
network structure on the performance of the system.

Both the task request load and the density of incidents are varied from light to extreme
circumstances. Although it would be impossible to look at all possible situations, simply
because there are way too many, the experiments are focused on the most interesting
things that were encountered.

Finally, the model is quite general. It includes many details that can be tuned to a
real-life application domain. For example, overtaking, vehicle capacities, per task reward
functions, etc.
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AppendixJ
Model details

Table J.1 and J.2 list the coefficients for the models M1 and M4respectively that are
described in Section?? and 5.3.3. The first column lists theβ -constants to be filled in in
the formula provided in the table caption. The variable Usedpmq is a dummy encoding: 1
if methodm is used, 0 otherwise. If Usedpmq � 0 for all methodsm, the method used is
the one not listed in the table; this method is theMACA method for both tables.
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Estimate Std. Error t value Pr(¡|t|)
(Intercept) 8.27e-01 2.84e-03 2.91e+02 0e+00

Used(Classical) -7.57e-01 4.02e-03 -1.88e+02 0e+00
Used(RR random) 8.58e-03 4.07e-03 2.11e+00 3.5e-02
Used(RP random) -4.51e-02 4.03e-03 -1.12e+01 6.46e-29
Used(RR delays) 9.42e-03 4.05e-03 2.32e+00 2.01e-02
Used(RP delays) -5.86e-02 4.03e-03 -1.45e+01 1.76e-47

Used(RR deadlines) 1.20e-02 4.02e-03 2.99e+00 2.81e-03
Used(RP deadlines) -4.46e-02 4.03e-03 -1.11e+01 2.30e-28

Used(RR profits) -1.32e-03 4.08e-03 -3.23e-01 7.47e-01
Used(RP profits) -6.4e-02 4.04e-03 -1.59e+01 4.5e-56

Used(RR wait) 1.04e-02 4.05e-03 2.57e+00 1.03e-02
Used(RR wait 10% slack) -2.29e-02 4.05e-03 -5.66e+00 1.59e-08
Used(RR wait 20% slack) -5.15e-02 4.04e-03 -1.27e+01 6.43e-37

Used(RP wait) -2.76e-02 4.03e-03 -6.86e+00 7.44e-12
Used(RP wait 10% slack) -5.62e-02 4.04e-03 -1.39e+01 9.08e-44
Used(RP wait 20% slack) -8.76e-02 4.03e-03 -2.18e+01 5.07e-103

Used(RR task) 1.53e-02 4.04e-03 3.78e+00 1.56e-04
Used(RP task) -3.93e-02 4.03e-03 -9.74e+00 2.38e-22

Used(RR inv task) -3.76e-03 4.08e-03 -9.21e-01 3.57e-01
Used(RP inv task) -5.36e-02 4.03e-03 -1.33e+01 5.13e-40

request load -1.26e-03 7.6e-06 -1.66e+02 0e+00
Used(Classical)�request load 1.16e-03 1.08e-05 1.08e+02 0e+00

Used(RR random)�request load 8.03e-06 1.1e-05 7.3e-01 4.65e-01
Used(RP random)�request load 3.51e-05 1.08e-05 3.24e+00 1.20e-03
Used(RR delays)�request load -1.30e-05 1.09e-05 -1.20e+00 2.32e-01
Used(RP delays)�request load 2.04e-05 1.08e-05 1.88e+00 6.02e-02

Used(RR deadlines)�request load -1.50e-05 1.08e-05 -1.39e+00 1.63e-01
Used(RP deadlines)�request load 4.41e-05 1.08e-05 4.07e+00 4.64e-05

Used(RR profits)�request load 1.83e-05 1.11e-05 1.65e+00 9.81e-02
Used(RP profits)�request load 7.57e-05 1.08e-05 6.98e+00 3.00e-12

Used(RR wait)�request load 4.85e-05 1.09e-05 4.44e+00 9.01e-06
Used(RR wait 10% slack)�request load 2.13e-05 1.09e-05 1.96e+00 5.05e-02
Used(RR wait 20% slack)�request load -6.38e-06 1.08e-05 -5.88e-01 5.57e-01

Used(RP wait)�request load 8.98e-05 1.08e-05 8.31e+00 1.05e-16
Used(RP wait 10% slack)�request load 5.65e-05 1.08e-05 5.23e+00 1.76e-07
Used(RP wait 20% slack)�request load 3.26e-05 1.08e-05 3.02e+00 2.56e-03

Used(RR task)�request load -1.73e-05 1.09e-05 -1.59e+00 1.12e-01
Used(RP task)�request load 5.63e-05 1.08e-05 5.2e+00 2.04e-07

Used(RR inv task)�request load 1.93e-05 1.11e-05 1.73e+00 8.3e-02
Used(RP inv task)�request load 6.03e-05 1.08e-05 5.57e+00 2.54e-08

Table J.1: The coefficients for Model M1:µ � β0� β1W� β2M � β3WM. Variable
Used(method) is 1 if the specified planning method has been used, and 0 otherwise.
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Estimate Std. Error t value Pr(¡|t|)
(Intercept) 4.28e-01 6.09e-03 7.02e+01 0e+00

Used(Classical) -3.83e-01 8.62e-03 -4.45e+01 0e+00
Used(RR random) 7.48e-02 8.7e-03 8.6e+00 9.11e-18
Used(RP random) 3.08e-02 8.61e-03 3.58e+00 3.43e-04
Used(RR delays) 6.3e-02 8.7e-03 7.25e+00 4.52e-13
Used(RP delays) 1.59e-02 8.63e-03 1.84e+00 6.61e-02

Used(RR deadlines) 6.95e-02 8.62e-03 8.06e+00 8.27e-16
Used(RP deadlines) 3.42e-02 8.64e-03 3.96e+00 7.69e-05

Used(RR profits) 5.91e-02 8.77e-03 6.74e+00 1.63e-11
Used(RP profits) 1.96e-02 8.65e-03 2.27e+00 2.34e-02

Used(RR wait) 8.3e-02 8.66e-03 9.59e+00 1.07e-21
Used(RR wait 10% slack) 6.55e-02 9.03e-03 7.26e+00 4.13e-13
Used(RR wait 20% slack) 2.94e-02 9.02e-03 3.25e+00 1.14e-03

Used(RP wait) 5.78e-02 7.49e-03 7.73e+00 1.19e-14
Used(RP wait 10% slack) 3.93e-02 9.05e-03 4.35e+00 1.39e-05
Used(RP wait 20% slack) 6.82e-03 9e-03 7.59e-01 4.48e-01

Used(RR task) 7.05e-02 8.64e-03 8.16e+00 3.66e-16
Used(RP task) 3.59e-02 8.64e-03 4.15e+00 3.31e-05

Used(RR inv task) 5.5e-02 8.72e-03 6.31e+00 2.92e-10
Used(RP inv task) 2.98e-02 8.64e-03 3.45e+00 5.53e-04

incidents -7.48e-04 1.37e-05 -5.45e+01 0e+00
Used(Classical)�incidents 7e-04 1.95e-05 3.59e+01 5.81e-268

Used(RR random)�incidents -1.36e-05 1.97e-05 -6.92e-01 4.89e-01
Used(RP random)�incidents 6.81e-05 1.95e-05 3.50e+00 4.75e-04
Used(RR delays)�incidents -2.12e-06 1.96e-05 -1.08e-01 9.14e-01
Used(RP delays)�incidents 8.45e-05 1.95e-05 4.33e+00 1.51e-05

Used(RR deadlines)�incidents -1.38e-05 1.95e-05 -7.1e-01 4.78e-01
Used(RP deadlines)�incidents 4.77e-05 1.96e-05 2.44e+00 1.47e-02

Used(RR profits)�incidents 5.57e-06 1.98e-05 2.82e-01 7.78e-01
Used(RP profits)�incidents 7.66e-05 1.95e-05 3.92e+00 9e-05

Used(RR wait)�incidents -3.64e-05 1.96e-05 -1.86e+00 6.31e-02
Used(RR wait 10% slack)�incidents -4.33e-05 2.09e-05 -2.08e+00 3.79e-02
Used(RR wait 20% slack)�incidents 2.31e-05 2.08e-05 1.11e+00 2.66e-01

Used(RP wait)�incidents 6.14e-06 1.69e-05 3.62e-01 7.17e-01
Used(RP wait 10% slack)�incidents 1.51e-05 2.08e-05 7.27e-01 4.67e-01
Used(RP wait 20% slack)�incidents 6.3e-05 2.09e-05 3.01e+00 2.58e-03

Used(RR task)�incidents -1.31e-05 1.95e-05 -6.72e-01 5.02e-01
Used(RP task)�incidents 5.44e-05 1.95e-05 2.79e+00 5.26e-03

Used(RR inv task)�incidents 2.01e-05 1.97e-05 1.02e+00 3.07e-01
Used(RP inv task)�incidents 6.41e-05 1.95e-05 3.28e+00 1.03e-03

Table J.2: The coefficients for Model M4:µ � β0 � β1i � βm� β2iβm. Variable
Used(method) is 1 if the specified planning method has been used, and 0 otherwise.
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AppendixK
List of hypotheses

Throughout this thesis several hypotheses were presented.Those were supported or fal-
sified using empirical evidence gained from the experimentsdescribed in Chapter 5. For
convenience, these hypotheses are listed here.
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Red thread

Classical approaches to operational transport planning treat planning separately from
conflict resolution, thereby seriously affecting travel predictability aspects, even under
incident-free conditions. Many researchers attempted to improve with MIP formulations,
but those turned out not sufficiently scalable for realisticproblems at the operational level.
Furthermore, there have been developments in shortest-path algorithms, where planning
and conflict resolution is integrated. Thesecontext-awarerouting algorithms seem aban-
doned because of their high cost in computation time.

In this thesis, we aim to design and evaluate a distributed approach, based on im-
proved context-aware routing. By means of this method predictability of travel plans can
be greatly enhanced under incident-free conditions. But modeling uncertainty and inci-
dents are present in any real-life situation. Therefore, inorder to improve the robustness
and performance under incident conditions, special variants of the method are developed,
which enable us to deal with incidents and modeling uncertainty.

We developed a new framework that supports both the classical approach as our
context-aware approach and its extensions such that they can be compared. The frame-
work includes infrastructure agents that (locally) guard the safety constraints of infras-
tructure resources. The infrastructure agents make a two-level approach possible. At the
first level, infrastructure agents compute reservations that are guaranteed to be safe (no
conflicts with other planned actions). At the second level, transport agents search plans
and they communicate with these infrastructure agents.

The behavior of the transport agents is largely determined by the planning method
they use. We developed a new multi-agent context-aware (MACA ) approach, which is
faster than its competitors. Subsequently, because of the arbitrary order in which transport
agents create plans and the presence of incidents, the extensionsMACA -RP andMACA -RR

are presented. We show positive examples illustrating the methods perform better in some
cases, though we do not provide theoretical bounds on the improvement.

Because we have shown that theMACA approach not always outperforms the classical
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approach, we present an extensive set of experiments to showempirical results. Due to
the many different parameters we want to control, we first make use of a synthesized set of
problem instances. Next, we also experiment with airport taxiing on the Schiphol airport
network to illustrate that our methods also work on a realistic example. The experiments
show thatMACA indeed outperforms the classical approach. Furthermore, the extended
MACA -RP andMACA -RR methods also significantly improve the performance, even inthe
absence of incidents.



Samenvatting
Nederlandse vertaling van Operational Transport Planning in a

Multi-Agent Setting

The problem setting is that there are a set of transportationorders with time windows both
for pickup and delivery. To travel over infrastructure resources, an agent needs to claim
these resources. In case an agent wishes to reserve a resource (rather than simply planning
to go there and relying on social rules), it can see the reservations of other agents on all
infrastructure resources. A transportation agent also needs to load packages into its hold,
which has a limited capacity; at the destination location, apackage must be unloaded
again. The time of loading and unloading is associated with areward function, and each
task also has a loading or unloading duration associated with it (in the TRAPLAS simula-
tor, at least). Currently, loading and unloading occurs at locations that have (practically)
no capacity constraints.

Jonne extends the resource-based infrastructure model of Hatzack and Nebel (HZN)
with the following: connectivity between resources a capacity of a resource: in HZN,
all resources have unit capacity. Jonne also allows capacities greater than one. In his
TRAPLAS simulator, though currently not in his PhD, Jonne also distinguishes between
infrastructure resources where vehicles can overtake, or not. Resources have a distance,
and a maximum speed, and vehicles also have a maximum speed. Together, these ele-
ments determine how long an agent will occupy a resource

Transportation resources (i.e., vehicles/agents) make plans consisting of: a route,
which is a sequence of resources a schedule, which is a sequence time points; these time
points may correspond to reservations the agent has made at the corresponding resour-
ces (it can also plan without reserving) a load function and an unload function, which
specifies the times at which packages are loaded and unloaded, respectively.

Like HZN, Jonne’s algorithms focus on operational (i.e., short-term) planning and
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scheduling. Unlike HZN, he does not assume that agents have aset of unalterable routes
in advance; rather, planning which route to take is a key partof his work (there is quite a
bit of background research on shortest path planning in his thesis). In addition, planning
and scheduling can be triggered as a result of new transportation orders, or incidents in
the system. He proposes the following incident model: incidents arrive in the system ac-
cording to an exponential distribution. An incident is either a communication incident or
a resource incident. A communication incident affects a single transportation agent, and
prevents it from communicating with other agents for a specified time interval. Inability
to communicate means that an agent has to fall back to simplercoordination methods,
as it can no longer see the reservations on resources of otheragents [right?]. A resource
incident affects the maximum speed of a resource. In case theresource is a vehicle, this
is the maximum speed at which it can travel; in case of an infrastructure resource, it is the
maximum allowed speed that is reduced.

Chapter 4 distinguishes different types of methods for taskallocation, planning, and
scheduling. Task allocation consists in assigning transportation orders to agents. When
auctions are used, agents will bid on transportation orders, and, if the right kind of auction
is chosen, an order should be awarded to the agent that has thehighest private value for
this order (however, if orders are auctioned off one by one, this does not imply that the
optimal distribution of orders over agents will reached). Alternative to using auctions is
that unassigned tasks are put on a blackboard, and as soon as some agent decides it wants
that order, it can take it off the blackboard. If reallocation of orders at a later stage is
possible, then the disadvantages of assigning orders to the’wrong agents’ is mitigated.

The planning scheduling of the agents consists of two separate parts: first, given a
partial plan to deliver a set of transportation orders, a neworder must be inserted some-
where in the ’visiting sequence’. Second, a route must be planned to and from the pickup
and delivery locations of the new orders. So, if the pickup ofa new package at location
b is planned between visiting locations a and c, then a new route must be planned from a
to b and from b to c, to replace the route from a to c. In TRAPLAS,a heuristic is used
to determine where to insert a new order, but the insertion ofnew orders is currently not
described in the thesis.

When an agent determines a route to deliver a (new) package, it must reserve the
resources on this route. To determine the best route betweentwo locations, the agents
make use of shortest path planning algorithms. This chapternot only describes some
of the research into the shortest path planning problem, it also presents an algorithm for
shortest path planning that takes into account reservations that other agents have made.

When an incident occurs, agents have different options of reacting to it (this is also
operational planning). The easiest is not to do any re-planning or scheduling, and rely on
social rules to resolve any conflicts between agents. Socialrules in this thesis are traffic
rules of a special kind, that determine which agents can go first when more than one agent
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contends for the use of a resource at the same time. The trafficrules are divided into static
rules, such as FIFO or longest queue first, or they may make useof dynamic information
that determines the priority of an agent. Assigning priority to agents can be done using
commonly employed scheduling heuristics such as earliest deadline first, or longest plan
first.

A more advanced method of dealing with an incident is to keep the agents’ routes,
but to reschedule their use of the resources. This can be initiated by an agent that is
unsatisfied with the level of resource availability, for instance when it is trying to insert a
new order into its plan. Typically, all agents sharing some (bottleneck) resources with the
requesting agent will be invited to participate in this re-scheduling process, by throwing
away their current reservations. The possibility of also re-planning routes is mentioned
but not explored.

A final idea, that may be used for infrastructure analysis, isto look at the level of
redundancy in a infrastructure network, that can be measured by counting the number of
alternative paths between two locations that differ at most, say, 5% from the shortest path.
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